Is it me or is it you? Physiological effects of the honey bee microbiota may instead be due to host maturation
- Award ID(s):
- 2344788
- PAR ID:
- 10554413
- Editor(s):
- McFall-Ngai, Margaret J
- Publisher / Repository:
- ASM Journals
- Date Published:
- Journal Name:
- mBio
- Volume:
- 15
- Issue:
- 10
- ISSN:
- 2150-7511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Compilers face an intrinsic tradeoff between compilation speed and code quality. The tradeoff is particularly stark in a dynamic setting where JIT compilation time contributes to application runtime. Many systems now employ multiple compilation tiers, where one tier offers fast compile speed while another has much slower compile speed but produces higher quality code. With proper heuristics on when to use each, the overall performance is better than using either compiler in isolation. At the introduction of WebAssembly into the Web platform in 2017, most engines employed optimizing compilers and pre-compiled entire modules before execution. Yet since that time, all Web engines have introduced new “baseline” compiler tiers for Wasm to improve startup time. Further, many new non-web engines have appeared, some of which also employ simple compilers. In this paper, we demystify single-pass compilers for Wasm, explaining their internal algorithms and tradeoffs, as well as providing a detailed empirical study of those employed in production. We show the design of a new single-pass compiler for a research Wasm engine that integrates with an in-place interpreter and host garbage collector using value tags, while also supporting flexible instrumentation. In experiments, we measure the effectiveness of optimizations targeting value tags and find, somewhat surprisingly, that the runtime overhead can be reduced to near zero. We also assess the relative compile speed and execution time of six baseline compilers and place these baseline compilers in a two-dimensional tradeoff space with other execution tiers for Wasm.more » « less
-
Abstract Magnetic flux rope, a type of magnetic field structure in space plasmas, has been studied for decades through both observational and theoretical means. We provide a brief report on our recent modeling study of its magnetic field configuration based on in-situ spacecraft measurements, focusing on those made for large-scale flux ropes in the interplanetary space. We illustrate the complexity in its field-line topology by presenting two event studies employing a unique analysis method. In particular, we demonstrate the feasibility and challenges for the approach to use two or more in-situ spacecraft datasets. We discuss the implications of our results and offer some thoughts on further advancing the investigation of the nature of the magnetic flux rope.more » « less
An official website of the United States government

