skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emission rates of species-specific volatiles vary across communities of Clarkia species: evidence for multi-modal character displacement
A current frontier of character displacement research is to determine if displacement occurs via multiple phenotypic pathways and varies across communities with different species compositions. Here, we conducted the first test for context-dependent character displacement in multi-modal floral signals by analyzing variation in floral scent in a system that exhibits character displacement in flower size, and that has multiple types of sympatric communities. In a greenhouse common garden experiment, we measured quantitative variation in volatile emission rates of the progeny of two species of Clarkia from replicated parental communities that contain one, two, or four Clarkia species. The first two axes of a constrained correspondence analysis, which explained 24 percent of the total variation in floral scent, separated the species and community types, respectively. Of the 23 compounds that were significantly correlated with these axes, nine showed patterns consistent with character displacement. Two compounds produced primarily by C. unguiculata and two compounds produced primarily by C. cylindrica were emitted in higher amounts in sympatry. Character displacement in some volatiles varied across sympatric parental communities and occurred in parallel with displacement in flower size, demonstrating that this evolutionary process can be context-dependent and may occur through multiple pathways.  more » « less
Award ID(s):
1754299
PAR ID:
10554496
Author(s) / Creator(s):
; ;
Publisher / Repository:
Dryad
Date Published:
Format(s):
Medium: X Size: 934243 bytes
Size(s):
934243 bytes
Right(s):
Creative Commons Zero v1.0 Universal
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseFloral scent is a complex trait that mediates many plant–insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature. MethodsWe used a greenhouse common garden experiment to investigate variation in floral scent at three scales—within plants, among plants, and among populations—and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation inOenothera cespitosasubsp.marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation. ResultsMultiple analytical approaches demonstrated substantial variation among and within populations in compound‐specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine‐derived compounds, and hypanthium length are consistent with a long‐tongued moth pollination syndrome. ConclusionsThe considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures. 
    more » « less
  2. Abstract In flowering plants that produce concealed rewards, pollinator foraging preferences may select for floral advertisement traits that are correlated with rewards. To date, studies have not focused on the potential for honest signals to vary across populations, which could occur due to differences in pollinator communities or plant mating system.We tested for variation in honest signals across and within populations and mating systems inArabis alpina, a broadly distributed arctic‐alpine perennial herb that is visited by a variable community of insects. In a greenhouse common garden, we tested for correlations between corolla area, floral scent and nectar volume in 29 populations. In 12 field populations, we examined variation in pollen limitation and corolla area.Across and within populations and mating systems, larger flowers generally produced more nectar. Total scent emission was not correlated with nectar production, but two compounds—phenylacetaldehyde and benzyl alcohol—may be honest signals in some populations. Corolla area was correlated with pollen limitation only across populations.Our results suggest that honest signals may be similar across populations but may not result from contemporary direct selection on floral advertisements. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract Background and AimsPollination failure occurs from insufficient pollen quantity or quality. However, the relative contributions of pollen quantity vs. quality to overall pollen limitation, and how this is affected by the co-flowering context, remain unknown for most plant populations. Here, we studied patterns of pollen deposition and pollen tube formation across populations of four predominately outcrossing species in the genus Clarkia to evaluate how the richness of co-flowering congeners affects the contribution of pollen quantity and quality to pollen limitation. MethodsWe partition variation in pollen deposition and pollen tube production across individuals, populations and species to identify the main sources of variation in components of reproductive success. We further quantify the relative contribution of pollen quantity and quality limitation to the reproductive success of the four Clarkia species using piecewise regression analyses. Finally, we evaluate how variation in the number of co-flowering Clarkia species in the community affects the strength of pollen quality and quality limitation. ResultsAcross all contexts, pollen deposition and the proportion of pollen tubes produced varied greatly among individuals, populations and species, and these were not always correlated. For instance, C. xantiana received the smallest pollen loads yet produced the highest proportion of pollen tubes, while C. speciosa exhibited the opposite pattern. Yet, co-flowering richness had variable effects on the strength of pollen quantity and quality limitation among populations. Specifically, breakpoint values, which are an indicator of overall pollen limitation, were two-fold higher in the four-species community compared with one- and two-species communities for two Clarkia species, suggesting that pollen limitation can increase with increasing richness of co-flowering congeners. ConclusionsOur results reveal a complex interplay between the quantity and quality of pollen limitation and co-flowering context that may have different evolutionary outcomes across species and populations. 
    more » « less
  4. The structure and function of biochemical and developmental pathways determine the range of accessible phenotypes, which are the substrate for evolutionary change. Accordingly, we expect that observed phenotypic variation across species is strongly influenced by pathway structure, with different phenotypes arising due to changes in activity along pathway branches. Here, we use flower colour as a model to investigate how the structure of pigment pathways shapes the evolution of phenotypic diversity. We focus on the phenotypically diverse Petunieae clade in the nightshade family, which containsca180 species ofPetuniaand related genera, as a model to understand how flavonoid pathway gene expression maps onto pigment production. We use multivariate comparative methods to estimate co-expression relationships between pathway enzymes and transcriptional regulators, and then assess how expression of these genes relates to the major axes of variation in floral pigmentation. Our results indicate that coordinated shifts in gene expression predict transitions in both total anthocyanin levels and pigment type, which, in turn, incur trade-offs with the production of UV-absorbing flavonol compounds. These findings demonstrate that the intrinsic structure of the flavonoid pathway and its regulatory architecture underlies the accessibility of pigment phenotypes and shapes evolutionary outcomes for floral pigment production. 
    more » « less
  5. Abstract Character displacement theory predicts that closely-related co-occurring species should diverge in relevant traits to reduce costly interspecific interactions such as competition or hybridization. While many studies document character shifts in sympatry, few provide corresponding evidence that these shifts are driven by the costs of co-occurrence. Black-capped (Poecile atricapillus) and mountain chickadees (Poecile gambeli) are closely-related, ecologically similar, and broadly distributed songbirds with both allopatric and sympatric populations. In sympatry, both species appear to suffer costs of their co-occurrence: (a) both species are in worse body condition compared to allopatry and (b) hybridization sometimes yields sterile offspring. Here, we explored character displacement in the songs of black-capped and mountain chickadees by characterizing variation in male songs from sympatric and allopatric populations. We found that mountain chickadees sing differently in sympatry versus allopatry. Specifically, they produced more notes per song, were more likely to include an extra introductory note, and produced a smaller glissando in their first notes compared to all other populations. Combined with previous research on social dominance and maladaptive hybridization between black-capped and mountain chickadees, we posit that differences in sympatric mountain chickadee song are population-wide shifts to reduce aggression from dominant black-capped chickadees and/or prevent maladaptive hybridization. 
    more » « less