skip to main content


This content will become publicly available on November 5, 2025

Title: Naphtho[2,3- a ]pyrene Thin Films – H, I, or J? Aggregate Alphabet Soup Served over Triplet Pair States
Photon upconversion in the solid state has the potential to improve existing solar and infrared imaging technologies due to its achievable efficiency at low power thresholds. However, despite considerable advancements in solution-phase upconversion, expanding the library of potential solid-state annihilators and developing a fundamental understanding of their solid-state behaviors remains challenging due to intermolecular coupling affecting the underlying energy landscape. Naphtho[2,3-a]pyrene has shown promise as a suitable solid-state annihilator. However, the origin of its multiple underlying emissive features remains unknown. To this point, here, we investigate NaPy/poly(methyl methacrylate) thin films at varying concentrations to tune the intermolecular coupling strength to determine its photophysical properties at a range of temperatures between 300–50 K. The results suggest that the multiple emissive features present in the NaPy thin film emission at room temperature arise from a multidimensional I-aggregate (520 nm), an excimer (550 nm), and a strongly coupled J-dimer (620 nm). In addition, we find that at low temperatures, the emission spectrum is dominated by direct emission from the 1(TT) state.  more » « less
Award ID(s):
2237977
PAR ID:
10554555
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of Physical Chemistry C
Date Published:
Journal Name:
The Journal of Physical Chemistry C
ISSN:
1932-7447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The lack of viable solid‐state annihilators is one of the greatest hurdles in perovskite‐sensitized triplet–triplet annihilation upconversion (UC). Unfavorable singlet and triplet energy surfaces in the solid state have limited the successful implementation of many conventional solution‐based annihilators. To date, rubrene is still the best‐performing annihilator; however, this comes at the cost of a limited apparent anti‐Stokes shift. To this point, anthracene derivatives are promising candidates to increase the apparent anti‐Stokes shift. The well‐known green glowstick dye 9,10‐(bisphenylethynyl)anthracene (BPEA) and its chlorinated derivatives have already shown promise in solution‐based UC applications. Due to favorable band alignment of the perovskite and triplet energy levels of BPEA, it is conceivable that a wide variety of BPEA derivatives can be compatible with the perovskite‐based UC system. Here, the properties of the parent molecule BPEA and its derivatives 1‐chloro‐9,10‐(bisphenylethynyl)anthracene and 2‐chloro‐9,10‐(bisphenylethynyl)anthracene are investigated. Despite similar optical properties in solution, the different molecules exhibit vastly different properties in thin films. UC studies in lead halide perovskite/BPEA bilayer devices demonstrate the importance of intermolecular coupling on the resulting properties of the upconverted emission.

     
    more » « less
  2. Near-infrared emissive materials with tunable Stokes shifts and solid-state emissions are needed for several active research areas and applications. To aid in addressing this need, a series of indolizine-cyanine compounds varying only the anions based on size, dipole, and hydrophilicity were prepared. The effect of the non-covalently bound anions on the absorption and emission properties of identical π-system indolizine-cyanine compounds were measured in solution and as thin films. Interestingly, the anion choice has a significant influence on the Stokes shift and molar absorptivities of the dyes in solution. In the solid-state, the anion choice was found to have an effect on the formation of aggregate states with higher energy absorptions than the parent monomer compound. The dyes were found to be emissive in the NIR region, with emissions peaking at near 900 nm for specific solvent and anion selections. 
    more » « less
  3. The development of efficient solid-state photon upconversion (UC) devices remains paramount for practical applications of the technology. In recent years, the incorporation of perovskite thin films as triplet sensitizers for triplet–triplet annihilation (TTA)-based UC has provided a promising solution. In the pursuit of finding an “ideal annihilator” to maximize the apparent anti-Stokes shift, we investigate naphtho[2,3-a]pyrene (NaPy) as an annihilator in both solution-based and perovskite-sensitized TTA-UC systems. Surprisingly, we observe different emission behaviors of NaPy in the solid state based on the excitation wavelength. Under direct excitation, a high-energy transition S1' dominates the emission spectrum, while UC results in increased emission from a lower lying state S1''. We propose that this is the result of aggregation-related lowering of the singlet excited state thus changing the fundamental energetic landscape underlying TTA. Aggregation decreases the singlet energy below the energy level of the triplet pair state 1(TT), yielding energetically favorable emission from the aggregated singlet state S1'' and weak emission from the higher lying singlet state S1' through thermally or entropically driven TTA-UC. 
    more » « less
  4. Abstract

    Emissive covalent organic frameworks (COFs) have recently emerged as next‐generation porous materials with attractive properties such as tunable topology, porosity, and inherent photoluminescence. Among the different types of COFs, substoichiometric frameworks (so‐called Type III COFs) are especially attractive due to the possibility of not only generating unusual topology and complex pore architectures but also facilitating the introduction of well‐defined functional groups at precise locations for desired functions. Herein, the first example of a highly emissive (PLQY 6.8%) substoichiometric 2D‐COF (COF‐SMU‐1) featuring free uncondensed aldehyde groups is reported. In particular,COF‐SMU‐1features a dual‐pore architecture with an overallbexnet topology, tunable emission in various organic solvents, and distinct colorimetric changes in the presence of water. To gain further insights into its photoluminescence properties, the charge transfer, excimer emission, and excited state exciton dynamics ofCOF‐SMU‐1are investigated using femtosecond transient absorption spectroscopy in different organic solvents. Additionally, highly enhanced atmospheric water‐harvesting properties ofCOF‐SMU‐1are revealed using FT‐IR and water sorption studies.The findings will not only lead to in‐depth understanding of structure–property relationships in emissive COFs but also open new opportunities for designing COFs for potential applications in solid‐state lighting and water harvesting.

     
    more » « less
  5. null (Ed.)
    A new naphthylsalophen and its 3 : 2 ligand-to-lanthanide sandwich-type complexes were isolated. When excited at 380 nm, the complexes display the characteristic metal-centred emission for Nd III , Er III and Yb III . Upon 980 nm excitation, in mixed lanthanide and the Er complexes, Er-centred upconversion emission at 543 and 656 nm is observed, with power densities as low as 2.18 W cm −2 . 
    more » « less