Abstract The type II polyproline helix (PPII) is a fundamental secondary structure of proteins, important in globular proteins, in intrinsically disordered proteins, and at protein‐protein interfaces. PPII is stabilized in part byn→π* interactions between consecutive carbonyls, via electron delocalization between an electron‐donor carbonyl lone pair (n) and an electron‐acceptor carbonyl (π*) on the subsequent residue. We previously demonstrated that changes to the electronic properties of the acyl donor can predictably modulate the strength ofn→π* interactions, with data from model compounds, in solution in chloroform, in the solid state, and computationally. Herein, we examined whether the electronic properties of acyl capping groups could modulate the stability of PPII in peptides in water. InX−PPGY‐NH2peptides (X=10 acyl capping groups), the effect of acyl group identity on PPII was quantified by circular dichroism and NMR spectroscopy. Electron‐rich acyl groups promoted PPII relative to the standard acetyl (Ac−) group, with the pivaloyl andiso‐butyryl groups most significantly increasing PPII. In contrast, acyl derivatives with electron‐withdrawing substituents and the formyl group relatively disfavored PPII. Similar results, though lesser in magnitude, were also observed inX−APPGY‐NH2peptides, indicating that the capping group can impact PPII conformation at both proline and non‐proline residues. The pivaloyl group was particularly favorable in promoting PPII. The effects of acyl capping groups were further analyzed inX–DfpPGY‐NH2andX−ADfpPGY‐NH2peptides, Dfp=4,4‐difluoroproline. Data on these peptides indicated that acyl groups induced order Piv‐ > Ac‐ > For‐. These results suggest that greater consideration should be given to the identity of acyl capping groups in inducing structure in peptides.
more »
« less
Impact of coverage and guest residue on polyproline II helix peptide antifouling
Abstract Polyproline II (PPII) peptide sequences are recognized as promising biomaterials because of their attractive antifouling properties. However, the mechanisms behind their antifouling behavior have not been fully characterized. In this work we show that PPII peptide coverage, controlled by adsorption time, significantly reduces the fouling of bovine serum albumin (BSA, a model foulant). In addition, guest residues introduced into the PPII sequence are shown to significantly impact BSA adsorption as well as human mesenchymal stem cell (hMSC) spreading. This research will help guide future PPII peptide designs for incorporation into novel biomaterials. Graphical abstract
more »
« less
- PAR ID:
- 10554569
- Publisher / Repository:
- Cambridge University Press (CUP)
- Date Published:
- Journal Name:
- MRS Communications
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2159-6867
- Format(s):
- Medium: X Size: p. 1134-1141
- Size(s):
- p. 1134-1141
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Programmable behavior combined with tailored stiffness and tunable biomechanical response are key requirements for developing successful materials. However, these properties are still an elusive goal for protein-based biomaterials. Here, we use protein-polymer interactions to manipulate the stiffness of protein-based hydrogels made from bovine serum albumin (BSA) by using polyelectrolytes such as polyethyleneimine (PEI) and poly-L-lysine (PLL) at various concentrations. This approach confers protein-hydrogels with tunable wide-range stiffness, from ~10–64 kPa, without affecting the protein mechanics and nanostructure. We use the 6-fold increase in stiffness induced by PEI to program BSA hydrogels in various shapes. By utilizing the characteristic protein unfolding we can induce reversible shape-memory behavior of these composite materials using chemical denaturing solutions. The approach demonstrated here, based on protein engineering and polymer reinforcing, may enable the development and investigation of smart biomaterials and extend protein hydrogel capabilities beyond their conventional applications.more » « less
-
Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption and time control of polymerization and improved the strong hydrophilicity of the modified polyvinylidene difluoride (PVDF) membrane. The sulfobetaine methacrylate (SBMA) monomer was treated with UV-light through polymerization on the PVDF membrane at a variable time interval of 30 to 300 s to grow a poly-SBMA (PSBMA) chain and improve the membrane hydrophilicity. We examined the physiochemical properties of as-prepared PVDF and PVDF–PSBMAx using numeric analytical tools. Then, the zwitterionic polymer with controlled performance was grafted onto the SBMA through UV-light treatment to improve its antifouling properties. The PVDF–PSBMA120s modified membrane exhibited a greater flux rate and indicated bovine serum albumin (BSA) rejection performance. PVDF–PSBMA120s and unmodified PVDF membranes were examined for their antifouling performance using up to three cycles dynamic test using BSA as foulant. The PVDF-modified PSBMA polymer improved the antifouling properties in this experiment. Overall, the resulting membrane demonstrated an enhancement in the hydrophilicity and permeability of the membrane and simultaneously augmented its antifouling properties.more » « less
-
Abstract Hierarchical plasmonic biomaterials constructed from small nanoparticles (NPs) that combine into larger micron‐sized structures exhibit unique properties that can be harnessed for various applications. Using diffusion‐limited aggregation (DLA) and defined peptide sequences, we developed fractal silver biomaterials with a Brownian tree structure. This method avoids complex redox chemistry and allows precise control of interparticle distance and material morphology through peptide design and concentration. Our systematic investigation revealed how peptide charge, length, and sequence impact biomaterial morphology, confirming that peptides act as bridging motifs between particles and induce coalescence. Characterization through spectroscopy and microscopy demonstrated that arginine‐based peptides are optimal for fractal assembly based on both quantitative and qualitative measurements. Additionally, our study of diffusion behavior confirmed the effect of particle size, temperature, and medium viscosity on nanoparticle mobility. This work also provides insights into the facet distribution in silver NPs and their assembly mechanisms, offering potential advancements in the design of materials for medical, environmental, and electronic applications.more » « less
-
ABSTRACT Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell‐secreted enzymes, which creates the possibility of utilizing cell‐secreted enzymes for tuning cell–material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies. Liquid chromatography–mass spectrometry (LC–MS) is a widely used, powerful methodology that can separate complex mixtures of molecules and quantify numerous analytes within a single run. There are several challenges in using LC–MS for the multiplexed quantification of cell‐induced peptide degradation, including the need for nondegradable internal standards and the identification of optimal sample storage conditions. Another problem is that cell culture media and biological samples typically contain both proteins and lipids that can accumulate on chromatography columns and degrade their performance. Removing these constituents can be expensive, time‐consuming, and increases sample variability. However, loading unpurified samples onto the column without removing lipids and proteins will foul the column. Here, we show that directly injecting complex, unpurified samples onto the LC–MS without any purification enables rapid and accurate quantification of peptide concentration and that hundreds of LC–MS runs can be done on a single column without significantly diminishing the ability to quantify the degradation of peptide libraries. To understand how repeated injections degrade column performance, a model library was injected into the LC–MS hundreds of times. It was then determined that column failure is evident when hydrophilic peptides are no longer retained on the column and that failure can be easily identified by using standard peptide mixtures for column benchmarking. In total, this work introduces a simple and effective method for simultaneously quantifying the degradation of dozens of peptides in cell culture. By providing a streamlined and cost‐effective method for the direct quantification of peptide degradation in complex biological samples, this work enables more efficient assessment of peptide stability and functionality, facilitating the development of advanced biomaterials and peptide‐based therapies.more » « less
An official website of the United States government
