skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency of spontaneous neurotransmission at individual boutons corresponds to the size of the readily releasable pool of vesicles.
Synapses maintain two forms of neurotransmitter release to support communication in the brain. First, evoked neurotransmitter release is triggered by the invasion of an action potential across en passant boutons that form along axons. The probability of evoked release (Pr) varies substantially across boutons, even within a single axon. Such heterogeneity is the result of differences in the probability of a single synaptic vesicle fusing (Pv) and in the number of vesicles available for immediate release, known as the readily-releasable pool (RRP). Spontaneous release (also known as a mini) is an important form of neurotransmission that occurs in the absence of action potentials. Because it cannot be triggered with electrical stimulation, much less is known about potential heterogeneity in the frequency of spontaneous release between boutons. We utilized a photostable and bright fluorescent indicator of glutamate release (iGluSnFR3) to quantify both spontaneous and evoked release at individual glutamatergic boutons. We found that the rate of spontaneous release is quite heterogenous at the level of individual boutons. Interestingly, when measuring both evoked and spontaneous release at single synapses, we found that boutons with the highest rates of spontaneous release also displayed the largest evoked responses.Using a new optical method to measure RRP at individual boutons, we found that this heterogeneity in spontaneous release was strongly correlated with the size of the RRP, but not related to Pv. We conclude that the RRP is a critical and dynamic aspect of synaptic strength that contributes to both evoked and spontaneous vesicle release. Significance StatementNeurotransmitter is released through two mechanisms: action potential-evoked and spontaneous vesicle fusion. It is unknown if some synapses specialize in either evoked or spontaneous release with an antagonistic relationship, or if the two forms of release coexist and have a cooperative relationship. We used a robust optical glutamate indicator to measure both forms of release at individual synapses. We found that the frequency of spontaneous release displays significant heterogeneity and is directly related to the size of the readily releasable pool of vesicles. This finding links both mechanisms of neurotransmitter release and suggests an important signaling mechanism to the postsynaptic neuron at individual synapses.  more » « less
Award ID(s):
1750199
PAR ID:
10554682
Author(s) / Creator(s):
; ;
Publisher / Repository:
Society for Neuroscience
Date Published:
Journal Name:
The Journal of Neuroscience
ISSN:
0270-6474
Page Range / eLocation ID:
e1253232024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR’s nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines. 
    more » « less
  2. Abstract Long‐term potentiation (LTP) is a widely studied form of synaptic plasticity engaged during learning and memory. Here the ultrastructural evidence is reviewed that supports an elevated and sustained increase in the probability of vesicle release and recycling during LTP. In hippocampal area CA1, small dense‐core vesicles and tethered synaptic vesicles are recruited to presynaptic boutons enlarging active zones. By 2 h during LTP, there is a sustained loss of vesicles, especially in presynaptic boutons containing mitochondria and clathrin‐coated pits. This decrease in vesicles accompanies an enlargement of the presynaptic bouton, suggesting they supply membrane needed for the enlarged bouton surface area. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane. Non‐docked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. Electron tomography reveals clustering of docked vesicles at higher local densities in active zones after LTP. Furthermore, the tethering filaments on vesicles at the active zone are shorter, and their attachment sites are shifted closer to the active zone. These changes suggest more vesicles are docked, primed and ready for release. The findings provide strong ultrastructural evidence for a long‐lasting increase in release probability following LTP.image 
    more » « less
  3. The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non–ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of femaleDrosophilalarvae, we observed alkaline spikes of over 1 log unit during fictive locomotionin vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non–ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses. SIGNIFICANCE STATEMENTNeurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity. 
    more » « less
  4. Abstract Mechanisms of synaptic vesicular fusion and neurotransmitter clearance are highly controlled processes whose finely‐tuned regulation is critical for neural function. This modulation has been suggested to involve pre‐synaptic auto‐receptors; however, their underlying mechanisms of action remain unclear. Previous studies with the well‐definedC. elegansnervous system have used functional imaging to implicate acid sensing ion channels (ASIC‐1) to describe synaptic vesicle fusion dynamics within its eight dopaminergic neurons. Implementing a similar imaging approach with a pH‐sensitive fluorescent reporter and fluorescence resonance after photobleaching (FRAP), we analyzed dynamic imaging data collected from individual synaptic termini in live animals. We present evidence that constitutive fusion of neurotransmitter vesicles on dopaminergic synaptic termini is modulated through DOP‐2 auto‐receptors via a negative feedback loop. Integrating our previous results showing the role of ASIC‐1 in a positive feedback loop, we also put forth an updated model for synaptic vesicle fusion in which, along with DAT‐1 and ASIC‐1, the dopamine auto‐receptor DOP‐2 lies at a modulatory hub at dopaminergic synapses. Our findings are of potential broader significance as similar mechanisms are likely to be used by auto‐receptors for other small molecule neurotransmitters across species. 
    more » « less
  5. Synapses of retinal rod photoreceptors involve deep invaginations occupied by second-order rod bipolar cell (RBP) and horizontal cell (HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. To study the impact of this architecture on glutamate diffusion and receptor activity, we reconstructed four rod terminals and their postsynaptic dendrites from serial electron micrographs of the mouse retina. We incorporated these structures into anatomically realistic Monte Carlo simulations of neurotransmitter diffusion and receptor activation. By comparing passive diffusion of glutamate in realistic structures with geometrically simplified models, we found that glutamate exits anatomically realistic synapses 10-fold more slowly than previously predicted. Constraining simulations with physiological data, we modeled activity of EAAT5 glutamate transporters in rods, AMPA receptors on HC dendrites, and metabotropic glutamate receptors (mGluR6) on RBP dendrites. Simulations suggested that ∼3,000 EAAT5 populate rod membranes. While uptake by surrounding glial Müller cells retrieves most glutamate released by rods, binding and uptake by EAAT5 influence RBP kinetics. Glutamate persistence allows mGluR6 on RBP dendrites to integrate the stream of vesicles released by rods in darkness. Glutamate’s tortuous diffusional path confers quantal variability, as release from nearby ribbon sites exerts larger effects on RBP and HC receptors than release from more distant sites. Temporal integration supports slower sustained release rates, but additional quantal variability can impede postsynaptic detection of changes in release produced by rod light responses. These results show an example of the profound impact that synaptic architecture can have on postsynaptic responses. 
    more » « less