skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrastructure and Function of the Stalk Gland Complex of Pompholyx faciemlarva (Rotifera: Monogononta)
ABSTRACT Many planktonic rotifers carry their oviposited eggs until hatching. In some species, the eggs are attached to the mother via secretions from her style gland, which forms a thread that extends from her cloaca. In species ofPompholyx, the mother possesses the rare ability to change the tension on the secreted thread, which alters the proximity of the egg with respect to her body. In this study, we used behavioral observations, confocal microscopy, and transmission electron microscopy to study the functional morphology of the stalk gland, which secretes a similar thread to the style gland. Our observations reveal that six longitudinal muscles insert on a stalk‐gland complex, which is a combination of a two‐headed gland and an epithelial duct that connects to the posterior cloaca. The gland secretes a single, long, electron‐dense thread that traverses the duct and attaches to the egg surface through the cloaca. Three retractor muscles insert on the stalk gland and function to pull the entire complex anteriorly, thereby increasing tension on the thread and moving the egg close to the mother's body. A set of three (two pairs and a single dorsal) protractor muscles antagonize these actions, and their contraction pulls the gland complex close to the cloaca, thereby releasing tension on the thread and allowing the egg to distance itself from the mother. The stalk gland complex does not appear to be homologous to the style glands of other rotifers, but we hypothesize that it functions as a form of maternal protection as is the case with style glands.  more » « less
Award ID(s):
2051684
PAR ID:
10554843
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Morphology
Volume:
285
Issue:
11
ISSN:
0362-2525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rotifers possess complex morphologies despite their microscopic size and simple appearance. Part of this complexity is hidden in the structure of their organs, which may be cellular or syncytial. Surprisingly, organs that are cellular in one taxon can be syncytial in another. Pedal glands are widespread across Rotifera and function in substrate attachment and/or egg brooding. These glands are normally absent inAsplanchna, which lack feet and toes that function as outlets for pedal glandular secretions in other rotifers. Here, we describe the ultrastructure of a pedal gland that is singular and syncytial inAsplanchnaaff.herricki, but is normally paired and cellular in all other rotifers.Asplanchnaaff.herrickihas a single large pedal gland that is active and secretory; it has a bipartite, binucleate, syncytial body and a cytosol filled with rough endoplasmic reticulum, Golgi, and several types of secretory vesicles. The most abundant vesicle type is large and contains a spherical electron‐dense secretion that appears to be produced through homotypic fusion of condensing vesicles produced by the Golgi. The vesicles appear to undergo a phase transition from condensed to decondensed along their pathway toward the gland lumen. Decondensation changes the contents to a mucin‐like matrix that is eventually exocytosed in a “kiss‐and‐run” fashion with the plasma membrane of the gland lumen. Exocytosed mucus enters the gland lumen and exits through an epithelial duct that is an extension of the syncytial integument. This results in mucus that extends from the rotifer as a long string as the animal swims through the water. The function of this mucus is unknown, but we speculate it may function in temporary attachment, prey capture, or floatation. 
    more » « less
  2. Abstract The retrocerebral organ (RCO) is a complex glandular system that is widely distributed across species of phylum Rotifera (sensu stricto). This system is hypothesized to secrete mucus that aids in benthic locomotion, adhesion, and/or reproduction. Unfortunately, the ultrastructure of the RCO is mostly unknown, having only been partially examined in one species. We used transmission electron microscopy and confocal laser scanning microscopy to describe the RCO in the planktonic freshwater rotiferTrichocerca similis. Results reveal the RCO to be a singular syncytial organ composed of a posterior glandular region, an expansive reservoir, and an anterior duct. The glandular portion has an active synthetic cytoplasm with paired nuclei, abundant rER, ribosomes, Golgi, and mitochondria. Electron‐dense secretion granules accumulate at the anterior end of the gland and undergo homotypic fusion to create larger, more electron‐lucent granules with numerous mesh‐like contents that gradually fuse into tubular secretions that accumulate in the reservoir. Ultrastructure of these secretions suggests they may be hydrated glycoproteins. Cross‐striated longitudinal muscles form a partial sleeve around the reservoir and may function to squeeze the secretions through the single cytoplasmic duct that penetrates the cerebral ganglion. A review of the RCOs from other rotifers suggests that further ultrastructural analyses are required before attempting to discern their functions and homologies. 
    more » « less
  3. null (Ed.)
    Abstract The Antarctic midge, Belgica antarctica , is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability. 
    more » « less
  4. Mechanosensory feedback of the internal reproductive state drives decisions about when and where to reproduce. For instance, stretch in the Drosophila reproductive tract produced by artificial distention or from accumulated eggs regulates the attraction to acetic acid to ensure optimal oviposition. How such mechanosensory feedback modulates neural circuits to coordinate reproductive behaviors is incompletely understood. We previously identified a stretch-dependent homeostat that regulates egg laying in Caenorhabditis elegans. Sterilized animals lacking eggs show reduced Ca2+ transient activity in the presynaptic HSN command motoneurons that drive egg-laying behavior, while animals forced to accumulate extra eggs show dramatically increased circuit activity that restores egg laying. Interestingly, genetic ablation or electrical silencing of the HSNs delays, but does not abolish, the onset of egg laying, with animals recovering vulval muscle Ca2+ transient activity upon egg accumulation. Using an acute gonad microinjection technique to mimic changes in pressure and stretch resulting from germline activity and egg accumulation, we find that injection rapidly stimulates Ca2+ activity in both neurons and muscles of the egg-laying circuit. Injection-induced vulval muscle Ca2+ activity requires L-type Ca2+ channels but is independent of presynaptic input. Conversely, injection-induced neural activity is disrupted in mutants lacking the vulval muscles, suggesting "bottom-up" feedback from muscles to neurons. Direct mechanical prodding activates the vulval muscles, suggesting that they are the proximal targets of the stretch-dependent stimulus. Our results show that egg-laying behavior in C. elegans is regulated by a stretch-dependent homeostat that scales postsynaptic muscle responses with egg accumulation in the uterus. 
    more » « less
  5. ABSTRACT For insects that depend on one or more bacterial endosymbionts for survival, it is critical that these bacteria are faithfully transmitted between insect generations. Cicadas harbor two essential bacterial endosymbionts, “ Candidatus Sulcia muelleri” and “ Candidatus Hodgkinia cicadicola.” In some cicada species, Hodgkinia has fragmented into multiple distinct but interdependent cellular and genomic lineages that can differ in abundance by more than two orders of magnitude. This complexity presents a potential problem for the host cicada, because low-abundance but essential Hodgkinia lineages risk being lost during the symbiont transmission bottleneck from mother to egg. Here we show that all cicada eggs seem to receive the full complement of Hodgkinia lineages, and that in cicadas with more complex Hodgkinia this outcome is achieved by increasing the number of Hodgkinia cells transmitted by up to 6-fold. We further show that cicada species with varying Hodgkinia complexity do not visibly alter their transmission mechanism at the resolution of cell biological structures. Together these data suggest that a major cicada adaptation to changes in endosymbiont complexity is an increase in the number of Hodgkinia cells transmitted to each egg. We hypothesize that the requirement to increase the symbiont titer is one of the costs associated with Hodgkinia fragmentation. IMPORTANCE Sap-feeding insects critically rely on one or more bacteria or fungi to provide essential nutrients that are not available at sufficient levels in their diets. These microbes are passed between insect generations when the mother places a small packet of microbes into each of her eggs before it is laid. We have previously described an unusual lineage fragmentation process in a nutritional endosymbiotic bacterium of cicadas called Hodgkinia . In some cicadas, a single Hodgkinia lineage has split into numerous related lineages, each performing a subset of original function and therefore each required for normal host function. Here we test how this splitting process affects symbiont transmission to eggs. We find that cicadas dramatically increase the titer of Hodgkinia cells passed to each egg in response to lineage fragmentation, and we hypothesize that this increase in bacterial cell count is one of the major costs associated with endosymbiont fragmentation. 
    more » « less