Abstract Sexual selection can result in the evolution of extreme armaments and ornaments, and the development and maintenance of these traits can come at a considerable cost. These costs have been implicated in enforcing an upper limit on trait divergence and promoting condition-dependent traits, such that only individuals in sufficiently high condition can effectively wield these armaments and advertise these ornaments. Numerous studies demonstrate the condition-dependence of sexually selected traits, especially those used by males to advertise to females. In this study, we investigated condition-dependent mating calls in the túngara frogPhysalaemus(= Engystomops)pustulosus. We manipulated male condition in the laboratory over a nine-day period by restricting food availability. We then documented: the relationship between male condition (the relative change in body mass from night 1 to night 9) and acoustic parameters of his mating call; how male condition influenced the male’s responses to call playbacks; and finally, how male condition influenced the attractiveness of the male’s calls to females. Males who were not fed during this period showed significant changes in call frequency, duration, and amplitude. In response to playbacks, unfed males called less, and made fewer complex calls. Finally, in phonotaxis experiments, females were more attracted to the calls of unfed males on night 1 to the calls of the same males on night 9. Fed males, on the other hand, showed no significant differences between nights 1 and 9 in call parameters, calling effort, and call attractiveness. This study shows the pervasive effects of condition on three aspects of sexual communication: signal parameters, behavioral response to vocal competition, and mating call attractiveness.
more »
« less
Female Túngara Frogs Discriminate against the Call of Males Infected by Chytridiomycosis
Abstract Species worldwide are disappearing in the most devastating mass extinction in human history and one of the six most profound extinctions in the history of life. Amphibians are greatly affected, approximately one third of living species are threatened, and many others are extinct. One of the main causes of amphibian species extinctions and population declines is the emerging infectious disease chytridiomycosis, caused by the fungusBatrachochytrium dendrobatidis(Bd). Although some species are somewhat tolerant of the disease, the non-lethal effects of the infection with Bd and their short or long term consequences are poorly understood. In these species there is the potential for behavioral responses to mitigate the spread of the fungus. Here we show that in túngara frogs, infection status influences the males’ mating calls. These infection-induced changes in the quality of males’ mating calls ultimately reduce the calls’ attractiveness to females making females less likely to respond to and thus mate with infected males. More broadly, our results imply that females might avoid mating with disease-infected males by assessing the acoustic signal only, and that such recruitment of behavioral responses might potentially ameliorate some of the effects of this sixth mass extinction. Lay summaryChytridiomycosis is an amphibian disease well known for its lethal effects. Túngara frogs are infected in nature, but seem to be resistant to the disease. Here we show that chytridiomycosis has non-lethal behavioral effects on túngara frogs. Females discriminate against infected males by assessing only their acoustic signal. The mating call of a male that is not infected with the disease is more attractive to females than the call of that same male when he is infected.
more »
« less
- Award ID(s):
- 1914652
- PAR ID:
- 10554902
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Male frogs court females from within crowded choruses, selecting for mechanisms allowing them to call at favourable times relative to the calls of rivals and background chorus noise. To accomplish this, males must continuously evaluate the fluctuating acoustic scene generated by their competitors for opportune times to call. Túngara frogs produce highly frequency- and amplitude-modulated calls from within dense choruses. We used similarly frequency- and amplitude-modulated playback tones to investigate the sensory basis of their call-timing decisions. Results revealed that different frequencies present throughout this species’ call differed in their degree of call inhibition, and that lower-amplitude tones were less inhibitory. Call-timing decisions were then driven by fluctuations in inhibition arising from underlying frequency- and amplitude-modulation patterns, with tone transitions that produced steeper decreases in inhibition having higher probabilities of triggering calls. Interactions between the varied behavioural sensitivities to different conspecific call frequencies revealed here, and the stereotyped amplitude- and frequency-modulation patterns present in this species’ calls, can explain previously surprising patterns observed in túngara frog choruses. This highlights the importance of understanding the specific sensory drivers underpinning conspecific signalling interactions, and reveals how sensory systems can mediate the interplay between signal perception and production to facilitate adaptive communication strategies.more » « less
-
Candolin, Ulrika (Ed.)Abstract Females of many species choose mates using multiple sensory modalities. Multimodal noise may arise, however, in dense aggregations of animals communicating via multiple sensory modalities. Some evidence suggests multimodal signals may not always improve receiver decision-making performance. When sensory systems process input from multimodal signal sources, multimodal noise may arise and potentially complicate decision-making due to the demands on cognitive integration tasks. We tested female túngara frog, Physalaemus (=Engystomops) pustulosus, responses to male mating signals in noise from multiple sensory modalities (acoustic and visual). Noise treatments were partitioned into three categories: acoustic, visual, and multimodal. We used natural calls from conspecifics and heterospecifics for acoustic noise. Robotic frogs were employed as either visual signal components (synchronous vocal sac inflation with call) or visual noise (asynchronous vocal sac inflation with call). Females expressed a preference for the typically more attractive call in the presence of unimodal noise. However, during multimodal signal and noise treatments (robofrogs employed with background noise), females failed to express a preference for the typically attractive call in the presence of conspecific chorus noise. We found that social context and temporal synchrony of multimodal signaling components are important for multimodal communication. Our results demonstrate that multimodal signals have the potential to increase the complexity of the sensory scene and reduce the efficacy of female decision making.more » « less
-
Demographic factors are fundamental in shaping infectious disease dynamics. Aspects of populations that create structure, like age and sex, can affect patterns of transmission, infection intensity and population outcomes. However, studies rarely link these processes from individual to population-scale effects. Moreover, the mechanisms underlying demographic differences in disease are frequently unclear. Here, we explore sex-biased infections for a multi-host fungal disease of bats, white-nose syndrome, and link disease-associated mortality between sexes, the distortion of sex ratios and the potential mechanisms underlying sex differences in infection. We collected data on host traits, infection intensity and survival of five bat species at 42 sites across seven years. We found females were more infected than males for all five species. Females also had lower apparent survival over winter and accounted for a smaller proportion of populations over time. Notably, female-biased infections were evident by early hibernation and likely driven by sex-based differences in autumn mating behaviour. Male bats were more active during autumn which likely reduced replication of the cool-growing fungus. Higher disease impacts in female bats may have cascading effects on bat populations beyond the hibernation season by limiting recruitment and increasing the risk of Allee effects.more » « less
-
Abstract Vast alteration of the biosphere by humans is causing a sixth mass extinction, driven in part by an increase in infectious diseases. The emergence of the lethal fungal pathogenBatrachochytrium dendrobatidis(Bd) has devastated global amphibian biodiversity. Given the lack of any broadly applicable methods to reverse these impacts, the future of many amphibians appears grim. The Sierra Nevada yellow-legged frog (Rana sierrae) is highly susceptible to Bd infection and mostR. sierraepopulations are extirpated following disease outbreaks. However, some populations persist and eventually recover, and frogs in these recovering populations have increased resistance against infection. Here, we conduct a 15-year reintroduction study and show that frogs collected from recovering populations and reintroduced to vacant habitats can reestablish populations despite the presence of Bd. In addition, the likelihood of establishment is influenced by site, cohort, and frog attributes. Results from viability modeling suggest that many reintroduced populations have a low probability of extinction over 50 years. These results provide a rare example of how reintroduction of resistant individuals can allow the landscape-scale recovery of disease-impacted species, and have broad implications for amphibians and other taxa that are threatened with extinction by novel pathogens.more » « less
An official website of the United States government

