This content will become publicly available on December 1, 2025
Title: Mobilome impacts on physiology in the widely used non-toxic mutant Microcystis aeruginosa PCC 7806 ΔmcyB and toxic wildtype
Abstract TheMicrocystismobilome is a well-known but understudied component of this bloom-forming cyanobacterium. Through genomic and transcriptomic comparisons, we found five families of transposases that altered the expression of genes in the well-studied toxigenic type-strain,Microcystis aeruginosaPCC 7086, and a non-toxigenic genetic mutant,Microcystis aeruginosaPCC 7806 ΔmcyB. Since its creation in 1997, the ΔmcyBstrain has been used in comparative physiology studies against the wildtype strain by research labs throughout the world. Some differences in gene expression between what were thought to be otherwise genetically identical strains have appeared due to insertion events in both intra- and intergenic regions. In our ΔmcyBisolate, a sulfate transporter gene cluster (sbp-cysTWA) showed differential expression from the wildtype, which may have been caused by the insertion of a miniature inverted repeat transposable element (MITE) in the sulfate-binding protein gene (sbp). Differences in growth in sulfate-limited media also were also observed between the two isolates. This paper highlights howMicrocystisstrains continue to “evolve” in lab conditions and illustrates the importance of insertion sequences / transposable elements in shaping genomic and physiological differences betweenMicrocystisstrains thought otherwise identical. This study forces the necessity of knowing the complete genetic background of isolates in comparative physiological experiments, to facilitate the correct conclusions (and caveats) from experiments. more »« less
Stark, Gwendolyn F; Truchon, Alexander R; Dittmann, Elke; Wilhelm, Steven W
(, Microbiology Resource Announcements)
Becket, Elinne
(Ed.)
ABSTRACT Here we report the complete, closed genome of the non-toxicMicrocystis aeruginosaPCC7806 ΔmcyBmutant strain. This genome is 5,103,923 bp long, with a GC content of 42.07%. Compared to the published wild-type genome (Microcystis aeruginosaPCC7806SL), there is evidence of accumulated mutations beyond the inserted chloramphenicol resistance marker.
Summary Microcystisis a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine‐scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits ofMicrocystisstrains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity withinMicrocystisand on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns ofMicrocystisdiversity in the field and genetic evidence for cohesive groups withinMicrocystis. We then compile data on strain‐level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions acrossMicrocystisstrains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain‐level dynamics, which influence the development, toxicity and cosmopolitan nature ofMicrocystisblooms.
Kling, Joshua D.; Lee, Michael D.; Walworth, Nathan G.; Webb, Eric A.; Coelho, Jordan T.; Wilburn, Paul; Anderson, Stephanie I.; Zhou, Qianqian; Wang, Chunguang; Phan, Megan D.; et al
(, Proceedings of the National Academy of Sciences)
The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacteriumSynechococcusisolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.
Høyland-Kroghsbo, Nina Molin; Bassler, Bonnie L.
(, Journal of Bacteriology)
Bondy-Denomy, Joseph
(Ed.)
ABSTRACT Chemical communication between bacteria and between bacteria and the bacteriophage (phage) viruses that prey on them can shape the outcomes of phage-bacterial encounters. Quorum sensing (QS) is a bacterial cell-to-cell communication process that promotes collective undertaking of group behaviors. QS relies on the production, release, accumulation, and detection of signal molecules called autoinducers. Phages can exploit QS-mediated communication to manipulate their hosts and maximize their own survival. In the opportunistic pathogen Pseudomonas aeruginosa , the LasI/R QS system induces the RhlI/R QS system, and in opposing manners, these two systems control the QS system that relies on the autoinducer called PQS. A P. aeruginosa Δ lasI mutant is impaired in PQS synthesis, leading to accumulation of the precursor molecule HHQ, and HHQ suppresses growth of the P. aeruginosa Δ lasI strain. We show that, in response to a phage infection, the P. aeruginosa Δ lasI mutant reactivates QS, which, in turn, restores pqsH expression, enabling conversion of HHQ into PQS. Moreover, downstream QS target genes encoding virulence factors are induced. Additionally, phage-infected P. aeruginosa Δ lasI cells transiently exhibit superior growth compared to uninfected cells. IMPORTANCE Clinical isolates of P. aeruginosa frequently harbor mutations in particular QS genes. Here, we show that infection by select temperate phages restores QS, a cell-to-cell communication mechanism in a P. aeruginosa QS mutant. Restoration of QS increases expression of genes encoding virulence factors. Thus, phage infection of select P. aeruginosa strains may increase bacterial pathogenicity, underscoring the importance of characterizing phage-host interactions in the context of bacterial mutants that are relevant in clinical settings.
Props, Ruben; Denef, Vincent J.; Nojiri, Hideaki
(, Applied and Environmental Microbiology)
ABSTRACT Most freshwater bacterial communities are characterized by a few dominant taxa that are often ubiquitous across freshwater biomes worldwide. Our understanding of the genomic diversity within these taxonomic groups is limited to a subset of taxa. Here, we investigated the genomic diversity that enables Limnohabitans , a freshwater genus key in funneling carbon from primary producers to higher trophic levels, to achieve abundance and ubiquity. We reconstructed eight putative Limnohabitans metagenome-assembled genomes (MAGs) from stations located along broad environmental gradients existing in Lake Michigan, part of Earth’s largest surface freshwater system. De novo strain inference analysis resolved a total of 23 strains from these MAGs, which strongly partitioned into two habitat-specific clusters with cooccurring strains from different lineages. The largest number of strains belonged to the abundant LimB lineage, for which robust in situ strain delineation had not previously been achieved. Our data show that temperature and nutrient levels may be important environmental parameters associated with microdiversification within the Limnohabitans genus. In addition, strains predominant in low- and high-phosphorus conditions had larger genomic divergence than strains abundant under different temperatures. Comparative genomics and gene expression analysis yielded evidence for the ability of LimB populations to exhibit cellular motility and chemotaxis, a phenotype not yet associated with available Limnohabitans isolates. Our findings broaden historical marker gene-based surveys of Limnohabitans microdiversification and provide in situ evidence of genome diversity and its functional implications across freshwater gradients. IMPORTANCE Limnohabitans is an important bacterial taxonomic group for cycling carbon in freshwater ecosystems worldwide. Here, we examined the genomic diversity of different Limnohabitans lineages. We focused on the LimB lineage of this genus, which is globally distributed and often abundant, and its abundance has shown to be largely invariant to environmental change. Our data show that the LimB lineage is actually comprised of multiple cooccurring populations for which the composition and genomic characteristics are associated with variations in temperature and nutrient levels. The gene expression profiles of this lineage suggest the importance of chemotaxis and motility, traits that had not yet been associated with the Limnohabitans genus, in adapting to environmental conditions.
Stark, Gwendolyn F, Truchon, Alexander R, and Wilhelm, Steven W. Mobilome impacts on physiology in the widely used non-toxic mutant Microcystis aeruginosa PCC 7806 ΔmcyB and toxic wildtype. Retrieved from https://par.nsf.gov/biblio/10555045. BMC Genomics 25.1 Web. doi:10.1186/s12864-024-10839-5.
Stark, Gwendolyn F, Truchon, Alexander R, & Wilhelm, Steven W. Mobilome impacts on physiology in the widely used non-toxic mutant Microcystis aeruginosa PCC 7806 ΔmcyB and toxic wildtype. BMC Genomics, 25 (1). Retrieved from https://par.nsf.gov/biblio/10555045. https://doi.org/10.1186/s12864-024-10839-5
Stark, Gwendolyn F, Truchon, Alexander R, and Wilhelm, Steven W.
"Mobilome impacts on physiology in the widely used non-toxic mutant Microcystis aeruginosa PCC 7806 ΔmcyB and toxic wildtype". BMC Genomics 25 (1). Country unknown/Code not available: BMC Open access. https://doi.org/10.1186/s12864-024-10839-5.https://par.nsf.gov/biblio/10555045.
@article{osti_10555045,
place = {Country unknown/Code not available},
title = {Mobilome impacts on physiology in the widely used non-toxic mutant Microcystis aeruginosa PCC 7806 ΔmcyB and toxic wildtype},
url = {https://par.nsf.gov/biblio/10555045},
DOI = {10.1186/s12864-024-10839-5},
abstractNote = {Abstract TheMicrocystismobilome is a well-known but understudied component of this bloom-forming cyanobacterium. Through genomic and transcriptomic comparisons, we found five families of transposases that altered the expression of genes in the well-studied toxigenic type-strain,Microcystis aeruginosaPCC 7086, and a non-toxigenic genetic mutant,Microcystis aeruginosaPCC 7806 ΔmcyB. Since its creation in 1997, the ΔmcyBstrain has been used in comparative physiology studies against the wildtype strain by research labs throughout the world. Some differences in gene expression between what were thought to be otherwise genetically identical strains have appeared due to insertion events in both intra- and intergenic regions. In our ΔmcyBisolate, a sulfate transporter gene cluster (sbp-cysTWA) showed differential expression from the wildtype, which may have been caused by the insertion of a miniature inverted repeat transposable element (MITE) in the sulfate-binding protein gene (sbp). Differences in growth in sulfate-limited media also were also observed between the two isolates. This paper highlights howMicrocystisstrains continue to “evolve” in lab conditions and illustrates the importance of insertion sequences / transposable elements in shaping genomic and physiological differences betweenMicrocystisstrains thought otherwise identical. This study forces the necessity of knowing the complete genetic background of isolates in comparative physiological experiments, to facilitate the correct conclusions (and caveats) from experiments.},
journal = {BMC Genomics},
volume = {25},
number = {1},
publisher = {BMC Open access},
author = {Stark, Gwendolyn F and Truchon, Alexander R and Wilhelm, Steven W},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.