skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting the invasion paradox: Resistance-richness relationship is driven by augmentation and displacement trends
Host-associated resident microbiota can protect their host from pathogens—a community-level trait called colonization resistance. The effect of the diversity of the resident community in previous studies has shown contradictory results, with higher diversity either strengthening or weakening colonization resistance. To control the confounding factors that may lead to such contradictions, we use mathematical simulations with a focus on species interactions and their impact on colonization resistance. We use a mediator-explicit model that accounts for metabolite-mediated interactions to performin silicoinvasion experiments. We show that the relationship between colonization resistance and species richness of the resident community is not monotonic because it depends on two underlying trends as the richness of the resident community increases: a decrease in instances of augmentation (invader species added, without driving out resident species) and an increase in instances of displacement (invader species added, driving out some of the resident species). These trends hold consistently under different parameters, regardless of the number of compounds that mediate interactions between species or the proportion of the facilitative versus inhibitory interactions among species. Our results show a positive correlation between resistance and diversity in low-richness communities and a negative correlation in high-richness communities, offering an explanation for the seemingly contradictory trend in the resistance-diversity relationship in previous reports.  more » « less
Award ID(s):
2103545
PAR ID:
10555133
Author(s) / Creator(s):
;
Editor(s):
Wingreen, Ned S
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
20
Issue:
6
ISSN:
1553-7358
Page Range / eLocation ID:
e1012193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Elton's biotic resistance hypothesis, which posits that diverse communities should be more resistant to biological invasions, has received considerable experimental support. However, it remains unclear whether such a negative diversity–invasibility relationship would persist under anthropogenic environmental change. By using the common ragweed (Ambrosia artemisiifolia) as a model invader, our 4‐year grassland experiment demonstrated consistently negative relationships between resident species diversity and community invasibility, irrespective of nitrogen addition, a result further supported by a meta‐analysis. Importantly, our experiment showed that plant diversity consistently resisted invasion simultaneously through increased resident biomass, increased trait dissimilarity among residents, and increased community‐weighted means of resource‐conservative traits that strongly resist invasion, pointing to the importance of both trait complementarity and sampling effects for invasion resistance even under resource enrichment. Our study provides unique evidence that considering species’ functional traits can help further our understanding of biotic resistance to biological invasions in a changing environment. 
    more » « less
  2. Abstract While community synchrony is a key framework for predicting ecological constancy, the interplay between community synchrony and ecological invasions remains unclear. Yet the degree of synchrony in a resident community may influence its resistance and resilience to the introduction of an invasive species. Here we used a generalizable mathematical framework, constructed with a modified Lotka–Volterra competition model, to first simulate resident communities across a range of competitive strengths and species' responses to environmental fluctuations, which yielded communities that ranged from strongly synchronous to compensatory. We then invaded these communities at different timesteps with invaders of varying demographic traits, after which we quantified the resident community's susceptibility to initial invasion attempts (resistance) and the degree to which community synchrony was altered after invasion (resiliency of synchrony). We found that synchronous communities were not only more resistant but also more resilient to invasion than compensatory communities, likely due to stronger competition between resident species and thus lower cumulative abundances in compensatory communities, providing greater opportunities for invasion. The growth rate of the invader was most influenced by the resident and invader competition coefficients and the growth rate of the invader species. Our findings support prioritizing the conservation of compensatory and weakly synchronous communities which may be at increased risk of invasion. 
    more » « less
  3. Abstract Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming. 
    more » « less
  4. Biological invasions are profoundly altering Earth’s ecosystems, but generalities about the effects of nonnative species on the diversity and productivity of native communities have been elusive. This lack of generality may reflect the limited spatial and temporal extents of most previous studies. Using >5 million tree measurements across eastern US forests from 1995 to 2023, we quantified temporal trends in tree diversity and biomass. We then analyzed community-level changes in native tree diversity and biomass in relation to nonnative tree invasion and native species colonization. Across the entire eastern United States, native tree species richness decreased over time in plots where nonnatives occurred, whereas nonnative species richness and the biomass of both natives and nonnatives increased over time. At the community scale, native richness tended to decline following nonnative invasion, whereas native biomass and richness-independent measures of trait and phylogenetic diversity tended to remain stable. These patterns can be explained by the rarity of the displaced native species and their functional and phylogenetic similarity to native species that survived nonnative invasions. In contrast, native survivors tended to be functionally distinct from nonnative invaders, suggesting an important role for niche partitioning in community dynamics. Colonization by previously absent native species was associated with an increase in native richness (beyond the addition of native colonizers), which contrasts with declines in native richness that tended to follow nonnative invasion. These results suggest a causal role for nonnative species in the native richness decline of invaded communities. 
    more » « less
  5. Abstract Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions. 
    more » « less