We study the problem of decomposing a polynomial p into a sum of r squares by minimizing a quadratically penalized objective fp(u)=‖‖∑ri=1u2i−p‖‖2. This objective is nonconvex and is equivalent to the rank-r Burer-Monteiro factorization of a semidefinite program (SDP) encoding the sum of squares decomposition. We show that for all univariate polynomials p, if r≥2 then fp(u) has no spurious second-order critical points, showing that all local optima are also global optima. This is in contrast to previous work showing that for general SDPs, in addition to genericity conditions, r has to be roughly the square root of the number of constraints (the degree of p) for there to be no spurious second-order critical points. Our proof uses tools from computational algebraic geometry and can be interpreted as constructing a certificate using the first- and second-order necessary conditions. We also show that by choosing a norm based on sampling equally-spaced points on the circle, the gradient ∇fp can be computed in nearly linear time using fast Fourier transforms. Experimentally we demonstrate that this method has very fast convergence using first-order optimization algorithms such as L-BFGS, with near-linear scaling to million-degree polynomials.
more »
« less
Tight Bounds for Volumetric Spanners and Applications
Given a set of points of interest, a volumetric spanner is a subset of the points using which all the points can be expressed using “small” coefficients (measured in an appropriate norm). This notion, which has also been referred to as a well-conditioned basis, has found several applications, including bandit linear optimization, determinant maximization, and matrix low rank approximation. In this paper, we give almost optimal bounds on the size of volumetric spanners for all L_p norms, and show that they can be constructed using a simple local search procedure. We then show the applications of our result to other tasks and in particular the problem of finding coresets for the Minimum Volume Enclosing Ellipsoid (MVEE) problem.
more »
« less
- Award ID(s):
- 2008688
- PAR ID:
- 10555344
- Editor(s):
- Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S
- Publisher / Repository:
- Neural Information Processing Systems
- Date Published:
- Subject(s) / Keyword(s):
- Volumetric spanners, Coresets
- Format(s):
- Medium: X
- Location:
- New Orleans, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Czumaj, Artur; Dawar, Anuj; Merelli, Emanuela (Ed.)Consider a set P ⊆ ℝ^d of n points, and a convex body C provided via a separation oracle. The task at hand is to decide for each point of P if it is in C using the fewest number of oracle queries. We show that one can solve this problem in two and three dimensions using O(⬡_P log n) queries, where ⬡_P is the largest subset of points of P in convex position. In 2D, we provide an algorithm which efficiently generates these adaptive queries. Furthermore, we show that in two dimensions one can solve this problem using O(⊚(P,C) log² n) oracle queries, where ⊚(P,C) is a lower bound on the minimum number of queries that any algorithm for this specific instance requires. Finally, we consider other variations on the problem, such as using the fewest number of queries to decide if C contains all points of P. As an application of the above, we show that the discrete geometric median of a point set P in ℝ² can be computed in O(n log² n (log n log log n + ⬡(P))) expected time.more » « less
-
The problem of clustering points on a union of subspaces finds numerous applications in machine learning and computer vision, and it has been extensively studied in the past two decades. When the subspaces are low-dimensional, the problem can be formulated as a convex sparse optimization problem, for which numerous accurate, efficient and robust methods exist. When the subspaces are of high relative dimension (e.g., hyperplanes), the problem is intrinsically non-convex, and existing methods either lack theory, are computationally costly, lack robustness to outliers, or learn hyperplanes one at a time. In this paper, we propose Hyperplane ARangentment Descent (HARD), a method that robustly learns all the hyperplanes simultaneously by solving a novel non-convex non-smooth ℓ1 minimization problem. We provide geometric conditions under which the ground-truth hyperplane arrangement is a coordinate-wise minimizer of our objective. Furthermore, we devise efficient algorithms, and give conditions under which they converge to coordinate-wise minimizes. We provide empirical evidence that HARD surpasses state-of-the-art methods and further show an interesting experiment in clustering deep features on CIFAR-10.more » « less
-
null (Ed.)In many network applications, it may be desirable to conceal certain target nodes from detection by a data collector, who is using a crawling algorithm to explore a network. For example, in a computer network, the network administrator may wish to protect those computers (target nodes) with sensitive information from discovery by a hacker who has exploited vulnerable machines and entered the network. These networks are often protected by hiding the machines (nodes) from external access, and allow only fixed entry points into the system (protection against external attacks). However, in this protection scheme, once one of the entry points is breached, the safety of all internal machines is jeopardized (i.e., the external attack turns into an internal attack). In this paper, we view this problem from the perspective of the data protector. We propose the Node Protection Problem: given a network with known entry points, which edges should be removed/added so as to protect as many target nodes from the data collector as possible? A trivial way to solve this problem would be to simply disconnect either the entry points or the target nodes – but that would make the network non-functional. Accordingly, we impose certain constraints: for each node, only (1 − r) fraction of its edges can be removed, and the resulting network must not be disconnected. We propose two novel scoring mechanisms - the Frequent Path Score and the Shortest Path Score. Using these scores, we propose NetProtect, an algorithm that selects edges to be removed or added so as to best impede the progress of the data collector. We show experimentally that NetProtect outperforms baseline node protection algorithms across several real-world networks. In some datasets, With 1% of the edges removed by NetProtect, we found that the data collector requires up to 6 (4) times the budget compared to the next best baseline in order to discover 5 (50) nodes.more » « less
-
Abstract A typical task for classical and quantum computing in chemistry is finding a potential energy surface (PES) along a reaction coordinate, which involves solving the quantum chemistry problem for many points along the reaction path. Developing algorithms to accomplish this task on quantum computers has been an active area of development, yet finding all the relevant eigenstates along the reaction coordinate remains a difficult problem, and determining PESs is thus a costly proposal. In this paper, we demonstrate the use of a eigenvector continuation—a subspace expansion that uses a few eigenstates as a basis—as a tool for rapidly exploring PESs. We apply this to determining the binding PES or torsion PES for several molecules of varying complexity. In all cases, we show that the PES can be captured using relatively few basis states; suggesting that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states in this manner.more » « less