Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this publication we describe enhancements made to our data processing pipeline and to our website to adapt to an ever-increasing information content. The number of sequences in UniProtKB has risen to over 227 million and we are working towards including a reference proteome for each taxonomic group. We continue to extract detailed annotations from the literature to update or create reviewed entries, while unreviewed entries are supplemented with annotations provided by automated systems using a variety of machine-learning techniques. In addition, the scientific community continues their contributions of publications and annotations to UniProt entries of their interest. Finally, we describe our new website (https://www.uniprot.org/), designed to enhance our users’ experience and make our data easily accessible to the research community. This interface includes access to AlphaFold structures for more than 85% of all entries as well as improved visualisations for subcellular localisation of proteins.
more »
« less
UniProt: the Universal Protein Knowledgebase in 2025
Abstract The aim of the UniProt Knowledgebase (UniProtKB; https://www.uniprot.org/) is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this publication, we describe ongoing changes to our production pipeline to limit the sequences available in UniProtKB to high-quality, non-redundant reference proteomes. We continue to manually curate the scientific literature to add the latest functional data and use machine learning techniques. We also encourage community curation to ensure key publications are not missed. We provide an update on the automatic annotation methods used by UniProtKB to predict information for unreviewed entries describing unstudied proteins. Finally, updates to the UniProt website are described, including a new tab linking protein to genomic information. In recognition of its value to the scientific community, the UniProt database has been awarded Global Core Biodata Resource status.
more »
« less
- Award ID(s):
- 2438144
- PAR ID:
- 10555465
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 53
- Issue:
- D1
- ISSN:
- 0305-1048
- Format(s):
- Medium: X Size: p. D609-D617
- Size(s):
- p. D609-D617
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.more » « less
-
Abstract The InterPro database (https://www.ebi.ac.uk/interpro/) provides an integrative classification of protein sequences into families, and identifies functionally important domains and conserved sites. Here, we report recent developments with InterPro (version 90.0) and its associated software, including updates to data content and to the website. These developments extend and enrich the information provided by InterPro, and provide a more user friendly access to the data. Additionally, we have worked on adding Pfam website features to the InterPro website, as the Pfam website will be retired in late 2022. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB. Moreover, we report the development of a card game as a method of engaging the non-scientific community. Finally, we discuss the benefits and challenges brought by the use of artificial intelligence for protein structure prediction.more » « less
-
Abstract MotivationAs fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt. ResultsWe introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms. Availability and implementationhttps://github.com/BioinfoMachineLearning/TransFew.more » « less
-
Abstract Protein language models (pLMs) have been widely adopted for various protein and peptide-related downstream tasks and demonstrated promising performance. However, short peptides are significantly underrepresented in commonly used pLM training datasets. For example, only 2.8% of sequences in the UniProt Reference Cluster (UniRef) contain fewer than 50 residues, which potentially limits the effectiveness of pLMs for peptide-specific applications. Here, we present PepBERT, a lightweight and efficient peptide language model specifically designed for encoding peptide sequences. Two versions of the model—PepBERT-large (4.9 million parameters) and PepBERT-small (1.86 million parameters)—were pretrained from scratch using four custom peptide datasets and evaluated on nine peptide-related downstream prediction tasks. Both PepBERT models achieved performance superior to or comparable to the benchmark model, ESM-2 with 7.5 million parameters, on 8 out of 9 datasets. Overall, PepBERT provides a compact yet effective solution for generating high-quality peptide representations for downstream applications. By enabling more accurate representation and prediction of bioactive peptides, PepBERT can accelerate the discovery of food-derived bioactive peptides with health-promoting properties, supporting the development of sustainable functional foods and value-added utilization of food processing by-products. The datasets, source codes, pretrained models, and tutorials for the usage of PepBERT are available athttps://github.com/dzjxzyd/PepBERT.more » « less
An official website of the United States government
