skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Imaging tissues and cells beyond the diffraction limit with structured illumination microscopy and Bayesian image reconstruction
Abstract Background

Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution).

Findings

Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open-source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods and with newer Bayesian restoration approaches that we are developing.

Conclusions

Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments are not typically published. Publically available, high-quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data were processed with SIMToolbox, an open-source and freely available software solution for SIM.

 
more » « less
PAR ID:
10555473
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
GigaScience
Volume:
8
Issue:
1
ISSN:
2047-217X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). Findings Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open-source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods and with newer Bayesian restoration approaches that we are developing. Conclusions Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments are not typically published. Publically available, high-quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data were processed with SIMToolbox, an open-source and freely available software solution for SIM. 
    more » « less
  2. Abstract Background Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system. Findings Five complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin. Conclusion The use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology. 
    more » « less
  3. Super-resolution microscopy has emerged as an indispensable methodology for probing the intricacies of cellular biology. Structured illumination microscopy (SIM), in particular, offers an advantageous balance of spatial and temporal resolution, allowing for visualizing cellular processes with minimal disruption to biological specimens. However, the broader adoption of SIM remains hampered by the complexity of instrumentation and alignment. Here, we introduce speckle-illumination super-resolution microscopy using hydrogel diffusers (hydroSIM). The study utilizes the high scattering and optical transmissive properties of hydrogel materials and realizes a remarkably simplified approach to plug-in super-resolution imaging via a common epi-fluorescence platform. We demonstrate thehydroSIM system using various phantom and biological samples, and the results exhibited effective 3D resolution doubling, optical sectioning, and high contrast. We foreseehydroSIM, a cost-effective, biocompatible, and user-accessible super-resolution methodology, to significantly advance a wide range of biomedical imaging and applications.

     
    more » « less
  4. Abstract

    Super-resolution fluorescence microscopy methods enable the characterization of nanostructures in living and fixed biological tissues. However, they require the adjustment of multiple imaging parameters while attempting to satisfy conflicting objectives, such as maximizing spatial and temporal resolution while minimizing light exposure. To overcome the limitations imposed by these trade-offs, post-acquisition algorithmic approaches have been proposed for resolution enhancement and image-quality improvement. Here we introduce the task-assisted generative adversarial network (TA-GAN), which incorporates an auxiliary task (for example, segmentation, localization) closely related to the observed biological nanostructure characterization. We evaluate how the TA-GAN improves generative accuracy over unassisted methods, using images acquired with different modalities such as confocal, bright-field, stimulated emission depletion and structured illumination microscopy. The TA-GAN is incorporated directly into the acquisition pipeline of the microscope to predict the nanometric content of the field of view without requiring the acquisition of a super-resolved image. This information is used to automatically select the imaging modality and regions of interest, optimizing the acquisition sequence by reducing light exposure. Data-driven microscopy methods like the TA-GAN will enable the observation of dynamic molecular processes with spatial and temporal resolutions that surpass the limits currently imposed by the trade-offs constraining super-resolution microscopy.

     
    more » « less
  5. Recent advancements in image-scanning microscopy have significantly enriched super-resolution biological research, providing deeper insights into cellular structures and processes. However, current image-scanning techniques often require complex instrumentation and alignment, constraining their broader applicability in cell biological discovery and convenient, cost-effective integration into commonly used frameworks like epi-fluorescence microscopes. Here, we introduce three-dimensional multifocal scanning microscopy (3D-MSM) for super-resolution imaging of cells and tissue with substantially reduced instrumental complexity. This method harnesses the inherent 3D movement of specimens to achieve stationary, multi-focal excitation and super-resolution microscopy through a standard epi-fluorescence platform. We validated the system using a range of phantom, single-cell, and tissue specimens. The combined strengths of structured illumination, confocal detection, and epi-fluorescence setup result in two-fold resolution improvement in all three dimensions, effective optical sectioning, scalable volume acquisition, and compatibility with general imaging and sample protocols. We anticipate that 3D-MSM will pave a promising path for future super-resolution investigations in cell and tissue biology.

     
    more » « less