Abstract This paper is the second in a two‐part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the hindlimb. Although the hindlimb skeleton did not undergo as marked a transformation on the line to mammals as did the forelimb skeleton, the anatomy of extant tetrapods indicates that major changes to musculature have nonetheless occurred. To better understand these changes, this study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 80 character–state complexes covering all muscles crossing the hip, knee, and ankle joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. The evolutionary history of mammalian hindlimb musculature was complex, nonlinear, and protracted, with several instances of convergence and pulses of anatomical transformation that continued well into the crown group. Numerous traits typically regarded as characteristically “mammalian” have much greater antiquity than previously recognized, and for some traits, most synapsids are probably more reflective of the ancestral amniote condition than are extant saurians. More broadly, this study highlights the utility of the fossil record in interpreting the evolutionary appearance of distinctive anatomies. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Convergent evolution in Afrotheria and non-afrotherians demonstrates high evolvability of the mammalian inner ear
                        
                    
    
            Abstract Evolutionary convergence in distantly related species is among the most convincing evidence of adaptive evolution. The mammalian ear, responsible for balance and hearing, is not only characterised by its spectacular evolutionary incorporation of several bones of the jaw, it also varies considerably in shape across modern mammals. Using a multivariate approach, we show that in Afrotheria, a monophyletic clade with morphologically and ecologically highly disparate species, inner ear shape has evolved similar adaptations as in non-afrotherian mammals. We identify four eco-morphological trait combinations that underlie this convergence. The high evolvability of the mammalian ear is surprising: Nowhere else in the skeleton are different functional units so close together; it includes the smallest bones of the skeleton, encapsulated within the densest bone. We suggest that this evolvability is a direct consequence of the increased genetic and developmental complexity of the mammalian ear compared to other vertebrates. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1902242
- PAR ID:
- 10555489
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The evolutionary shift from a single-element ear, multi-element jaw to a multi-element ear, single-element jaw during the transition to crown mammals marks one of the most dramatic structural transformations in vertebrates. Research on this transformation has focused on mammalian middle-ear evolution, but a mandible comprising only the dentary is equally emblematic of this evolutionary radiation. Here, we show that the remarkably diverse jaw shapes of crown mammals are coupled with surprisingly stereotyped jaw stiffness. This strength-based morphofunctional regime has a genetic basis and allowed mammalian jaws to effectively resist deformation as they radiated into highly disparate forms with markedly distinct diets. The main functional consequences for the mandible of decoupling hearing and mastication were a trade-off between higher jaw stiffness versus decreased mechanical efficiency and speed compared with non-mammals. This fundamental and consequential shift in jaw form–function underpins the ecological and taxonomic diversification of crown mammals. This article is part of the theme issue ‘The mammalian skull: development, structure and function’.more » « less
- 
            Abstract The early diversification of tetrapods into terrestrial environments involved adaptations of their locomotor apparatus that allowed for weight support and propulsion on heterogeneous surfaces. Many lineages subsequently returned to the water, while others conquered the aerial environment, further diversifying under the physical constraints of locomoting through continuous fluid media. While many studies have explored the relationship between locomotion in continuous fluids and body mass, none have focused on how continuous fluid media have impacted the macroevolutionary patterns of limb shape diversity.We investigated whether mammals that left terrestrial environments to use air and water as their main locomotor environment experienced constraints on the morphological evolution of their forelimb, assessing their degree of morphological disparity and convergence. We gathered a comprehensive sample of more than 800 species that cover the extant family‐level diversity of mammals, using linear measurements of the forelimb skeleton to determine its shape and size.Among mammals, fully aquatic groups have the most disparate forelimb shapes, possibly due to the many different functional roles performed by flippers or the relaxation of constraints on within‐flipper bone proportions. Air‐based locomotion, in contrast, is linked to restricted forelimb shape diversity. Bats and gliding mammals exhibit similar morphological patterns that have resulted in partial phenotypic convergence, mostly involving the elongation of the proximal forelimb segments.Thus, whereas aquatic locomotion drives forelimb shape diversification, aerial locomotion constrains forelimb diversity. These results demonstrate that locomotion in continuous fluid media can either facilitate or limit morphological diversity and more broadly that locomotor environments have fostered the morphological and functional evolution of mammalian forelimbs. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Synopsis Mammals exhibit a diverse range of limb morphologies that are associated with different locomotor ecologies and structural mechanics. Much remains to be investigated, however, about the combined effects of locomotor modes and scaling on the external shape and structural properties of limb bones. Here, we used squirrels (Sciuridae) as a model clade to examine the effects of locomotor mode and scaling on the external shape and structure of the two major limb bones, the humerus and femur. We quantified humeral and femoral morphologies using 3D geometric morphometrics and bone structure analyses on a sample of 76 squirrel species across their four major ecotypes. We then used phylogenetic generalized linear models to test how locomotor ecology, size, and their interaction influenced morphological traits. We found that size and locomotor mode exhibit different relationships with the external shape and structure of the limb bones, and that these relationships differ between the humerus and femur. External shapes of the humerus and, to a lesser extent, the femur are best explained by locomotor ecology rather than by size, whereas structures of both bones are best explained by interactions between locomotor ecology and scaling. Interestingly, the statistical relationships between limb morphologies and ecotype were lost when accounting for phylogenetic relationships among species under Brownian motion. That assuming Brownian motion confounded these relationships is not surprising considering squirrel ecotypes are phylogenetically clustered; our results suggest that humeral and femoral variation partitioned early between clades and their ecomorphologies were maintained to the present. Overall, our results show how mechanical constraints, locomotor ecology, and evolutionary history may enact different pressures on the shape and structure of limb bones in mammals.more » « less
- 
            Abstract Changing the shape of craniofacial bones can profoundly alter ecological function, and understanding how developmental conditions sculpt skeletal phenotypes can provide insight into evolutionary adaptations. Thyroid hormone (TH) stimulates metamorphosis and regulates skeletal morphogenesis across vertebrates. To assess the roles of this hormone in sculpting the craniofacial skeleton of a non‐metamorphic vertebrate, we tested zebrafish for developmental periods of TH‐induced craniofacial shape change. We analyzed shapes of specific bones that function in prey detection, capture and processing. We quantified these elements from late‐larval through adult stages under three developmental TH profiles. Under wild‐type conditions, each bone progressively grows allometrically into a mature morphology over the course of postembryonic development. In three of the four bones, TH was required to sculpt an adult shape: hypothyroidism inhibited aspects of shape change, and allowed some components of immature shape to be retained into adulthood. Excess developmental TH stimulated aspects of precocious shape change leading to abnormal morphologies in some bones. Skeletal features with functional importance showed high sensitivities to TH, including the transformator process of the tripus, the mandibular symphysis of the lower jaw, the scutiform lamina of the hyomandibula, and the anterior arm of the pharyngeal jaw. In all, we found that TH is necessary for shaping mature morphology of several essential skeletal elements; this requirement is particularly pronounced during larval development. Altered TH titer leads to abnormal morphologies with likely functional consequences, highlighting the potential of TH and downstream pathways as targets for evolutionary change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
