skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: XHap: haplotype assembly using long-distance read correlations learned by transformers
  SummaryReconstructing haplotypes of an organism from a set of sequencing reads is a computationally challenging (NP-hard) problem. In reference-guided settings, at the core of haplotype assembly is the task of clustering reads according to their origin, i.e. grouping together reads that sample the same haplotype. Read length limitations and sequencing errors render this problem difficult even for diploids; the complexity of the problem grows with the ploidy of the organism. We present XHap, a novel method for haplotype assembly that aims to learn correlations between pairs of sequencing reads, including those that do not overlap but may be separated by large genomic distances, and utilize the learned correlations to assemble the haplotypes. This is accomplished by leveraging transformers, a powerful deep-learning technique that relies on the attention mechanism to discover dependencies between non-overlapping reads. Experiments on semi-experimental and real data demonstrate that the proposed method significantly outperforms state-of-the-art techniques in diploid and polyploid haplotype assembly tasks on both short and long sequencing reads. Availability and implementationThe code for XHap and the included experiments is available at https://github.com/shoryaconsul/XHap.  more » « less
Award ID(s):
2109983
PAR ID:
10555595
Author(s) / Creator(s):
; ;
Editor(s):
Forslund,  Sofia
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
3
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The high sequencing error rate has impeded the application of long noisy reads for diploid genome assembly. Most existing assemblers failed to generate high-quality phased assemblies using long noisy reads. Here, we present PECAT, aPhasedErrorCorrection andAssemblyTool, for reconstructing diploid genomes from long noisy reads. We design a haplotype-aware error correction method that can retain heterozygote alleles while correcting sequencing errors. We combine a corrected read SNP caller and a raw read SNP caller to further improve the identification of inconsistent overlaps in the string graph. We use a grouping method to assign reads to different haplotype groups. PECAT efficiently assembles diploid genomes using Nanopore R9, PacBio CLR or Nanopore R10 reads only. PECAT generates more contiguous haplotype-specific contigs compared to other assemblers. Especially, PECAT achieves nearly haplotype-resolved assembly onB. taurus(Bison×Simmental) using Nanopore R9 reads and phase block NG50 with 59.4/58.0 Mb for HG002 using Nanopore R10 reads. 
    more » « less
  2. Birol, Inanc (Ed.)
    Abstract Motivation Oxford Nanopore sequencing has great potential and advantages in population-scale studies. Due to the cost of sequencing, the depth of whole-genome sequencing for per individual sample must be small. However, the existing single nucleotide polymorphism (SNP) callers are aimed at high-coverage Nanopore sequencing reads. Detecting the SNP variants on low-coverage Nanopore sequencing data is still a challenging problem. Results We developed a novel deep learning-based SNP calling method, NanoSNP, to identify the SNP sites (excluding short indels) based on low-coverage Nanopore sequencing reads. In this method, we design a multi-step, multi-scale and haplotype-aware SNP detection pipeline. First, the pileup model in NanoSNP utilizes the naive pileup feature to predict a subset of SNP sites with a Bi-long short-term memory (LSTM) network. These SNP sites are phased and used to divide the low-coverage Nanopore reads into different haplotypes. Finally, the long-range haplotype feature and short-range pileup feature are extracted from each haplotype. The haplotype model combines two features and predicts the genotype for the candidate site using a Bi-LSTM network. To evaluate the performance of NanoSNP, we compared NanoSNP with Clair, Clair3, Pepper-DeepVariant and NanoCaller on the low-coverage (∼16×) Nanopore sequencing reads. We also performed cross-genome testing on six human genomes HG002–HG007, respectively. Comprehensive experiments demonstrate that NanoSNP outperforms Clair, Pepper-DeepVariant and NanoCaller in identifying SNPs on low-coverage Nanopore sequencing data, including the difficult-to-map regions and major histocompatibility complex regions in the human genome. NanoSNP is comparable to Clair3 when the coverage exceeds 16×. Availability and implementation https://github.com/huangnengCSU/NanoSNP.git. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract BackgroundDe novo phased (haplo)genome assembly using long-read DNA sequencing data has improved the detection and characterization of structural variants (SVs) in plant and animal genomes. Able to span across haplotypes, long reads allow phased, haplogenome assembly in highly outbred organisms such as forest trees. Eucalyptus tree species and interspecific hybrids are the most widely planted hardwood trees with F1 hybrids of Eucalyptus grandis and E. urophylla forming the bulk of fast-growing pulpwood plantations in subtropical regions. The extent of structural variation and its effect on interspecific hybridization is unknown in these trees. As a first step towards elucidating the extent of structural variation between the genomes of E. grandis and E. urophylla, we sequenced and assembled the haplogenomes contained in an F1 hybrid of the two species. FindingsUsing Nanopore sequencing and a trio-binning approach, we assembled the separate haplogenomes (566.7 Mb and 544.5 Mb) to 98.0% BUSCO completion. High-density SNP genetic linkage maps of both parents allowed scaffolding of 88.0% of the haplogenome contigs into 11 pseudo-chromosomes (scaffold N50 of 43.8 Mb and 42.5 Mb for the E. grandis and E. urophylla haplogenomes, respectively). We identify 48,729 SVs between the two haplogenomes providing the first detailed insight into genome structural rearrangement in these species. The two haplogenomes have similar gene content, 35,572 and 33,915 functionally annotated genes, of which 34.7% are contained in genome rearrangements. ConclusionsKnowledge of SV and haplotype diversity in the two species will form the basis for understanding the genetic basis of hybrid superiority in these trees. 
    more » « less
  4. Alkan, Can (Ed.)
    Abstract MotivationDetection of structural variants (SVs) from the alignment of sample DNA reads to the reference genome is an important problem in understanding human diseases. Long reads that can span repeat regions, along with an accurate alignment of these long reads play an important role in identifying novel SVs. Long-read sequencers, such as nanopore sequencing, can address this problem by providing very long reads but with high error rates, making accurate alignment challenging. Many errors induced by nanopore sequencing have a bias because of the physics of the sequencing process and proper utilization of these error characteristics can play an important role in designing a robust aligner for SV detection problems. In this article, we design and evaluate HQAlign, an aligner for SV detection using nanopore sequenced reads. The key ideas of HQAlign include (i) using base-called nanopore reads along with the nanopore physics to improve alignments for SVs, (ii) incorporating SV-specific changes to the alignment pipeline, and (iii) adapting these into existing state-of-the-art long-read aligner pipeline, minimap2 (v2.24), for efficient alignments. ResultsWe show that HQAlign captures about 4%–6% complementary SVs across different datasets, which are missed by minimap2 alignments while having a standalone performance at par with minimap2 for real nanopore reads data. For the common SV calls between HQAlign and minimap2, HQAlign improves the start and the end breakpoint accuracy by about 10%–50% for SVs across different datasets. Moreover, HQAlign improves the alignment rate to 89.35% from minimap2 85.64% for nanopore reads alignment to recent telomere-to-telomere CHM13 assembly, and it improves to 86.65% from 83.48% for nanopore reads alignment to GRCh37 human genome. Availability and implementationhttps://github.com/joshidhaivat/HQAlign.git. 
    more » « less
  5. Ingvarsson, P (Ed.)
    Abstract Eucalyptus grandis is a hardwood tree used worldwide as pure species or hybrid partner to breed fast-growing plantation forestry crops that serve as feedstocks of timber and lignocellulosic biomass for pulp, paper, biomaterials, and biorefinery products. The current v2.0 genome reference for the species served as the first reference for the genus and has helped drive the development of molecular breeding tools for eucalypts. Using PacBio HiFi long reads and Omni-C proximity ligation sequencing, we produced an improved, haplotype-phased assembly (v4.0) for TAG0014, an early-generation selection of E. grandis. The 2 haplotypes are 571 Mbp (HAP1) and 552 Mbp (HAP2) in size and consist of 37 and 46 contigs scaffolded onto 11 chromosomes (contig N50 of 28.9 and 16.7 Mbp), respectively. These haplotype assemblies are 70–90 Mbp smaller than the diploid v2.0 assembly but capture all except one of the 22 telomeres, suggesting that substantial redundant sequence was included in the previous assembly. A total of 35,929 (HAP1) and 35,583 (HAP2) gene models were annotated, of which 438 and 472 contain long introns (>10 kbp) in gene models previously (v2.0) identified as multiple smaller genes. These and other improvements have increased gene annotation completeness levels from 93.8 to 99.4% in the v4.0 assembly. We found that 6,493 and 6,346 genes are within tandem duplicate arrays (HAP1 and HAP2, respectively, 18.4 and 17.8% of the total) and >43.8% of the haplotype assemblies consists of repeat elements. Analysis of synteny between the haplotypes and the E. grandis v2.0 reference genome revealed extensive regions of collinearity, but also some major rearrangements, and provided a preview of population and pangenome variation in the species. 
    more » « less