Bottlebrush polymers, macromolecules consisting of dense polymer side chains grafted from a central polymer backbone, have unique properties resulting from this well-defined molecular architecture. With the advent of controlled radical polymerization techniques, access to these architectures has become more readily available. However, synthetic challenges remain, including the need for intermediate purification, the use of toxic solvents, and challenges with achieving long bottlebrush architectures due to backbone entanglements. Herein, we report hybrid bonding bottlebrush polymers (systems integrating covalent and noncovalent bonding of structural units) consisting of poly(sodium 4-styrenesulfonate) (p(NaSS)) brushes grafted from a peptide amphiphile (PA) supramolecular polymer backbone. This was achieved using photoinitiated electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization in water. The structure of the hybrid bonding bottlebrush architecture was characterized using cryogenic transmission electron microscopy, and its properties were probed using rheological measurements. We observed that hybrid bonding bottlebrush polymers were able to organize into block architectures containing domains with high brush grafting density and others with no observable brushes. This finding is possibly a result of dynamic behavior unique to supramolecular polymer backbones, enabling molecular exchange or translational diffusion of monomers along the length of the assemblies. The hybrid bottlebrush polymers exhibited higher solution viscosity at moderate shear, protected supramolecular polymer backbones from disassembly at high shear, and supported self-healing capabilities, depending on grafting densities. Our results demonstrate an opportunity for novel properties in easily synthesized bottlebrush polymer architectures built with supramolecular polymers that might be useful in biomedical applications or for aqueous lubrication.
more »
« less
This content will become publicly available on November 17, 2025
Spintronic Pathways in a Nonconjugated Radical Polymer Glass
Abstract Radical chemistries have attracted burgeoning attention due to their intriguing technological applications in organic electronics, optoelectronics, and magneto‐responsive systems. However, the potential of these magnetically active glassy polymers to transport spin‐selective currents has not been demonstrated. Here, the spin‐transport characteristics of the radical polymer poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl) (PTEO) allow for sustained spin‐selective currents when incorporated into typical device geometries with magnetically polarized electrodes. Annealing thin films of PTEO above its glass transition temperature results in a giant magnetoresistance effect (i.e., an MR of ≈80%) at 4 K. Additionally, ferromagnetic resonance spin‐pumping results in a relatively large effective spin‐mixing conductance of 1.18 × 1019m−2at the NiFe/PTEO interface. Due to the large spin‐density and radical‐radical exchange interactions, there is effective propagation of pure spin currents through PTEO in the NiFe/PTEO/Pd multilayer devices. This results in the transport of spin current over long distances with a spin diffusion length of 90.4 nm. The spin diffusion length and spin mixing conductance values surpass those reported in inorganic and metallic systems and are comparable to conventional doped conjugated polymers. This is the first example of spin transport in a nonconjugated radical polymer, and these findings underscore the promising spin‐transporting potential of radical polymers.
more »
« less
- Award ID(s):
- 2321618
- PAR ID:
- 10555623
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 37
- Issue:
- 3
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spin-accumulation and spin-current profiles are calculated for a disordered Pt film subjected to an in-plane electric current within the nonequilibrium Green's function approach. In the bulklike region of the sample, this approach captures the intrinsic spin Hall effect found in other calculations. Near the surfaces, the results reveal qualitative differences with the results of the widely used spin-diffusion model, even when the boundary conditions are modified to try to account for them. One difference is that the effective spin-diffusion length for transverse spin transport is significantly different from its longitudinal counterpart and is instead similar to the mean-free path. This feature may be generic for spin currents generated via the intrinsic spin Hall mechanism because of the differences in transport mechanisms compared to longitudinal spin transport. Orbital accumulation in the Pt film is only significant in the immediate vicinity of the surfaces and has a small component penetrating into the bulk only in the presence of spin-orbit coupling, as a secondary effect induced by the spin accumulation.more » « less
-
Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models. Importantly, by combining information from each of these scales, we are able to bridge the gap between bottom-up molecular characteristics and macroscopic properties such as apparent diffusion coefficients of electron transport (Dapp). We investigate the impact of different polymer backbones and of two critical factors during battery operation: state of charge and polymer swelling. Our findings reveal that the state of charge significantly influences solid-state packing and the thermophysical properties of the polymers, which, in turn, affect ionic and electronic transport. A combination of molecular-level properties (such as the reorganization energy) and condensed-phase properties (such as effective electron hopping distances) determine the predicted ranking of electron transport capabilities of the polymers. We predict Dapp for the phthalimide-based polymers and for a reference nitroxide radical-based polymer, finding a 3 orders of magnitude increase in Dapp (≈10–6 cm2 s–1) with respect to the reference. This study underscores the promise of phthalimide-containing polymers as highly capable redox-active polymers for anodic materials in all-organic batteries, due to their exceptional predicted electron transport capabilities.more » « less
-
We present a study of the transport properties of thermally generated spin currents in an insulating ferrimagnetic-antiferromagnetic-ferrimagnetic trilayer over a wide range of temperature. Spin currents generated by the spin Seebeck effect (SSE) in a yttrium iron garnet (YIG) YIG/NiO/YIG trilayer on a gadolinium gallium garnet (GGG) substrate were detected using the inverse spin Hall effect (ISHE) in Pt. By studying samples with different NiO thicknesses, the spin diffusion length of NiO was determined to be ∼3.8 nm at room temperature. Surprisingly, a large increase of the SSE signal was observed below 30 K, and the field dependence of the signal closely follows a Brillouin function for an S=7/2 spin. The increase of the SSE signal at low temperatures could thus be associated with the paramagnetic SSE from the GGG substrate. Besides, a broad peak in the SSE response was observed around 100 K. These observations are important in understanding the generation and transport properties of spin currents through magnetic insulators and the role of a paramagnetic substrate in spin current generation.more » « less
-
Tunneling spectroscopy between parallel two-dimensional (2D) electronic systems provides a powerful method to probe the underlying electronic properties by measuring tunneling conductance. In this work, we present a theoretical framework for spin transport in 2D-to-2D tunneling systems, driven by spin pumping. This theory applies to a vertical heterostructure where two layers of metallic 2D electron systems are separated by an insulating barrier, with one layer exchange coupled to a magnetic layer driven at resonance. Utilizing a nonperturbative Floquet-Keldysh formalism, we derive general expressions for the tunneling spin and charge currents across a broad range of driving frequencies, extending beyond the traditional adiabatic pumping regime. At low frequencies, we obtain analytical results that recover the known behaviors in the adiabatic regime. However, at higher frequencies, our numerical findings reveal significant deviations in the dependence of spin and charge currents on both frequency and precession angle. This work offers fresh insights into the role of magnetization dynamics in tunneling transport, opening up new avenues for exploring nonadiabatic spin pumping phenomena.more » « less
An official website of the United States government
