skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 17, 2025

Title: Translanguaging practices in global K‐12 science education settings: A systematic literature review
Abstract Recently, there has been a surge of literature on the implementation of translanguaging pedagogy and practices in science education settings. By activating and validating learners' full communicative repertoire, translanguaging holds promise to build an inclusive science learning community where multilingual learners' ways of knowing are not only respected but celebrated and extended. Drawing from the dual synergy between translanguaging and science education on multimodalities and social justice agenda, this systematic review synthesized the key features of empirical research published from 2010 to 2023 that reported translanguaging practices in global K‐12 formal and informal science education settings. The results indicated high heterogeneity in the studied socio‐geographic landscapes and in the definition, implementation, and implication of translanguaging practices. Analysis of the science sense‐making practices indicates some epistemic practices are more widely represented than others, with marginal global differences observed. To maintain and embolden the synergy between science education and translanguaging, our findings recommend increased collaboration between Science, Technology, Engineering and Mathmatics (STEM) education and bilingual education and collaboration between teachers and researchers to develop an effective translanguaging environment for science learning.  more » « less
Award ID(s):
2247435
PAR ID:
10555626
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
62
Issue:
1
ISSN:
0022-4308
Format(s):
Medium: X Size: p. 270-306
Size(s):
p. 270-306
Sponsoring Org:
National Science Foundation
More Like this
  1. Bilingual education has described a process called translanguaging by which students use linguistic resources across and beyond multiple named languages to learn. Here, we examine how bilingual learners translanguage while learning computer science. These middle schoolers participated in a curricular intervention which infused computational thinking into their Spanish-English bilingual language arts class. Through a descriptive qualitative methodology, we document classroom moments supporting four claims: 1) students’ translanguaging blurs linguistic, disciplinary, and modal boundaries, 2) computational literacies are intertwined with students’ other literacies , 3) students’ attitudes about language and the contexts around them play a role in their translanguaging, and 4) students translanguage to engage in specific CT practices. 
    more » « less
  2. Abstract The Next Generation Science Standards (NGSS) provide a vision for contemporary science education with all students, including the fast‐growing population of multilingual learners in the United States K‐12 context. The shifts heralded by the NGSS have resulted in significant changes to English language proficiency (ELP) or English language development (ELD) standards so they better align with content standards and support all students, including multilingual learners, to engage in language‐rich disciplinary practices (e.g., arguing from evidence). The purpose of this article is to describe ELP/ELD standards aligned with content standards. Specifically, we describe how the policy initiatives of the NGSS as science standards and WIDA 2020 as ELP/ELD standards reflect each other in terms of conceptual foundations and architecture of the standards guiding classroom practices. By becoming more explicitly aware of how science standards and language standards present “mirror images” of each other, science educators will be better positioned to collaborate with their language education colleagues. As this article is intended to engage science educators who are generally familiar with the NGSS but likely new to ELP/ELD standards, we describe WIDA 2020 in detail and in ways accessible to a broad audience. In doing so, we aim to ensure the science education and language education communities are coordinated in their efforts to promote equitable science learning for all students, including multilingual learners. We close with implications for research, policy, and practice through collaboration between science education (as well as other content areas) and language education. 
    more » « less
  3. Background and Context: In this theory paper, we explore the concept of translanguaging from bilingual education, and its implications for teaching and learning programming and computing in especially computer science (CS) for all initiatives. Objective: We use translanguaging to examine how programming is and isn't like using human languages. We frame CS as computational literacies. We describe a pedagogical approach for teaching computational literacies. Method: We review theory from applied linguistics, literacy, and computational literacy. We provide a design narrative of our pedagogical approach by describing activities from bilingual middle school classrooms integrating Scratch into academic subjects. Findings: Translanguaging pedagogy can leverage learners' (bilingual and otherwise) full linguistic repertoires as they engage with computational literacies. Implications: Our data helps demonstrate how translanguaging can be mobilized to do CS, which has implications for increasing equitable participation in computer science. 
    more » « less
  4. Background/Context: Bi/multilingual students’ STEM learning is better supported when educators leverage their language and cultural practices as resources, but STEM subject divisions have been historically constructed based on oppressive, dominant values and exclude the ways of knowing of nondominant groups. Truly promoting equity requires expanding and transforming STEM disciplines. Purpose/Objective/Research Question/Focus of Study: This article contributes to efforts to illuminate emergent bi/multilingual students’ ways of knowing, languaging, and doing in STEM. We follow the development of syncretic literacies in relation to translanguaging practices, asking, How do knowledges and practices from different communities get combined and reorganized by students and teachers in service of new modeling practices? Setting and Participants: We focus on a seventh-grade science classroom, deliberately designed to support syncretic literacies and translanguaging practices, where computer science concepts were infused into the curriculum through modeling activities. The majority of the students in the bilingual program had arrived in the United States at most three years before enrolling, from the Caribbean and Central and South America. Research Design: We analyze one lesson that was part of a larger research–practice partnership focused on teaching computer science through leveraging translanguaging practices and syncretic literacies. The lesson was a modeling and computing activity codesigned by the teacher and two researchers about post–Hurricane María outmigration from Puerto Rico. Analysis used microethnographic methods to trace how students assembled translanguaging, social, and schooled practices to make sense of and construct models. Findings/Results: Findings show how students assembled representational forms from a variety of practices as part of accomplishing and negotiating both designed and emergent goals. These included sensemaking, constructing, explaining, justifying, and interpreting both the physical and computational models of migration. Conclusions/Recommendations: Implications support the development of theory and pedagogy that intentionally make space for students to engage in meaning-making through translanguaging and syncretic practices in order to provide new possibilities for lifting up STEM learning that may include, but is not constrained by, disciplinary learning. Additional implications for teacher education and student assessment practices call for reconceptualizing schooling beyond day-to-day curriculum as part of making an ontological shift away from prioritizing math, science, and CS disciplinary and language objectives as defined by and for schooling, and toward celebrating, supporting, and centering students’ diverse, syncretic knowledges and knowledge use. 
    more » « less
  5. null (Ed.)
    The construct of active learning permeates undergraduate education in science, technology, engineering, and mathematics (STEM), but despite its prevalence, the construct means different things to different people, groups, and STEM domains. To better understand active learning, we constructed this review through an innovative interdisciplinary collaboration involving research teams from psychology and discipline-based education research (DBER). Our collaboration examined active learning from two different perspectives (i.e., psychology and DBER) and surveyed the current landscape of undergraduate STEM instructional practices related to the modes of active learning and traditional lecture. On that basis, we concluded that active learning—which is commonly used to communicate an alternative to lecture and does serve a purpose in higher education classroom practice—is an umbrella term that is not particularly useful in advancing research on learning. To clarify, we synthesized a working definition of active learning that operates within an elaborative framework, which we call the construction-of-understanding ecosystem. A cornerstone of this framework is that undergraduate learners should be active agents during instruction and that the social construction of meaning plays an important role for many learners, above and beyond their individual cognitive construction of knowledge. Our proposed framework offers a coherent and actionable concept of active learning with the aim of advancing future research and practice in undergraduate STEM education. 
    more » « less