skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogenomics of Lasiodoriforms: reclassification of the South American genus Vitalius Lucas, Silva and Bertani and allied genera (Araneae: Theraphosidae)
Theraphosinae is the most diverse subfamily of Theraphosidae spiders, but their evolutionary history remains unresolved to date. This problem is common in taxonomic groups with phylogenetic hypotheses that have often been based only on qualitative morphological characters and, rarely, on molecular analyses. Phylogenomics has significantly contributed to the understanding of the evolution of many non-model groups, such as spiders. Herein, we employed ultraconserved elements (UCEs) phylogenomics to propose a new hypothesis for a group of Theraphosinae genera, namely Lasiodoriforms:Vitalius, Lasiodora, Eupalaestrus, Pterinopelma, Proshapalopus, andNhandu. We propose three genera and their respective morphological diagnoses are provided. Our phylogeny supports the transfer of species from the genusVitaliustoPterinopelmaandProshapalopusand fromProshapalopustoEupalaestrus. Finally, we describe a new species ofVitaliusfrom Southern Brazil. Based on these three new generic descriptions and transferred species, the Lasiodoriform tarantulas comprise nine genera from Argentina, Brazil, Paraguay, and Uruguay, and the genusVitaliusnow includes seven species.  more » « less
Award ID(s):
2144339
PAR ID:
10555737
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers in Ecology & Evolution
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
11
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The systematics of humble-in-appearance brown spiders (“marronoids”), within a larger group of spiders with a modified retrolateral tibial apophysis (the RTA Clade), has long vexed arachnologists. Although not yet fully settled, recent phylogenomics has allowed the delimitation and phylogenetic relationships of families within marronoids to come into focus. Understanding relationships within these families still awaits more comprehensive generic-level sampling, as the majority of described marronoid genera remain unsampled for phylogenomic data. Here we conduct such an analysis in the family Cybaeidae Banks, 1892. We greatly increase generic-level sampling, assembling ultraconserved element (UCE) data for 18 of 22 described cybaeid genera, including all North American genera, and rigorously test family monophyly using a comprehensive outgroup taxon sample. We also conduct analyses of traditional Sanger loci, allowing curation of some previously published data. Our UCE phylogenomic results support the monophyly of recognized cybaeids, with strongly supported internal relationships, and evidence for five primary molecular subclades. We hypothesize potential morphological synapomorphies for most of these subclades, bringing a robust phylogenomic underpinning to cybaeid classification. A new cybaeid genusSiskiyugen. nov.and speciesSiskiyu armillasp. nov.is discovered and described from far northern California and adjacent southern Oregon and a new species in the elusive genusCybaeozyga,C. furtivasp. nov., is described from far northern California. 
    more » « less
  2. Since the first phylogenetic study of the order Batrachospermales,Batrachospermumwas shown to be paraphyletic. Subsequently, sections of the genus have been methodically investigated usingDNAsequences and morphology in order to propose new genera and delineate species.BatrachospermumsectionTurfosais the last section with multiple species yet to be examined. New sequence data of specimens from Europe and the United States were combined with the sparse sequence data already available. Phylogenetic analyses usingrbcL andCOI‐5P sequences showed this section to be a well‐supported clade, distinct fromBatrachospermumsectionBatrachospermumand its segregate genera. Section Turfosais raised to the generic rank asPaludicolagen. nov. Substantial genetic variation within the genus was discovered and 12 species are recognized based onDNAsequence data as well as morphological characters and geographic distribution. The following morphological characters were applied to distinguish species: branching pattern (pseudodichotomous or irregular), whorl size (reduced or well developed), primary fascicles (curved or straight), spermatangia origin (primary or secondary fascicles), and carposporophyte arrangement (loose or dense). Previously published species were transferred to the new genus:P. turfosa,P. keratophyta,P. orthosticha,P. phangiae,andP. periploca. Seven new species are proposed as follows:P. groenbladiifrom Europe;P. communis,P. johnhallii, andP. leafensisfrom North America; andP. aquanigra,P. diamantinensis, andP. turfosiformisfrom Brazil. In addition, three unsequenced species in the section,P. bakarensis,P. gombakensis, andP. tapirensis, were transferred to the new genus. 
    more » « less
  3. The rarely encountered spider genusHexurellaGertsch & Platnick, 1979 includes some of the smallest mygalomorph spiders in the world, with four poorly known taxa from central and southeastern montane Arizona, southern California, and northern Baja California Norte. At time of description the genus was known from fewer than 20 individuals, with sparse natural history information suggesting a vagrant, web-building, litter-dwelling natural history. Here the first published taxonomic and natural history information for this taxon is provided in more than 50 years, working from extensive new geographic sampling, consideration of male and female morphology, and sequence capture-based nuclear phylogenomics and mitogenomics. Several new species are easily diagnosed based on distinctive male morphologies, while a complex of populations from central and northern Arizona required an integrative combination of genomic algorithmic species delimitation analyses and morphological study. Four new species are described, includingH. ephedrasp. nov.,H. uwiiltilsp. nov.,H. xericasp. nov., andH. zassp. nov.Females ofH. encinaGertsch & Platnick, 1979 are also described for the first time. It is predicted that additional new species will ultimately be found in the mountains of central and northwestern Arizona, northern mainland Mexico, and the Mojave Desert of California. 
    more » « less
  4. Abstract The Anacardiaceae are a characteristic angiosperm family of the Neotropics where they comprise ~32 genera and 200 species (~80 genera and 800 species globally). Among Neotropical Anacardiaceae genera, Schinus has the greatest species richness with 42 species distributed from tropical latitudes of Brazil and Peru south to the temperate steppe, matorral, and Valdivian temperate forest communities of Patagonia. Previous studies have found some anatomical and morphological leaf traits (e.g. simple vs. compound leaf organization) useful in characterizing lineages within Schinus, but also document traits that are homoplastic within the genus (e.g. stomatal distribution) and convergent among Schinus and its close relatives Lithrea and Mauria (e.g. mesophyll arrangement). Here, we present a survey of leaf cuticular traits in 53 species of Schinus and its closest relatives Lithrea, Mauria, and Euroschinus based on characters observed with scanning electron and optical light microscopy. We use ordinated Bray–Curtis distances based on 18 characters and 2D nonmetric multidimensional scaling to show that cuticular morphology resolves the three most diverse genera, Euroschinus, Mauria, and Schinus, but does not resolve intrageneric sections of Schinus. We propose that a distinctive acuminate gland type occurring only within Euroschinus may constitute a potential synapomorphy for this genus. Within Schinus, we find inconsistency in stomatal distribution among specimens of a single species, among species of a single section, and between sections of the genus, and suggest that current evidence is insufficient to implicate either phenotypic plasticity or homoplasy as the causative mechanism of this variation. 
    more » « less
  5. null (Ed.)
    Abstract Understanding diversity has been a pursuit in evolutionary biology since its inception. A challenge arises when sexual selection has played a role in diversification. Questions of what constitutes a ‘species’, homoplasy vs. synapomorphy, and whether sexually selected traits show phylogenetic signal have hampered work on many systems. Peacock spiders are famous for sexually selected male courtship dances and peacock-like abdominal ornamentation. This lineage of jumping spiders currently includes over 90 species classified into two genera, Maratus and Saratus. Most Maratus species have been placed into groups based on secondary sexual characters, but evolutionary relationships remain unresolved. Here we assess relationships in peacock spiders using phylogenomic data (ultraconserved elements and RAD-sequencing). Analyses reveal that Maratus and the related genus Saitis are paraphyletic. Many, but not all, morphological groups within a ‘core Maratus’ clade are recovered as genetic clades but we find evidence for undocumented speciation. Based on original observations of male courtship, our comparative analyses suggest that courtship behaviour and peacock-like abdominal ornamentation have evolved sequentially, with some traits inherited from ancestors and others evolving repeatedly and independently from ‘simple’ forms. Our results have important implications for the taxonomy of these spiders, and provide a much-needed evolutionary framework for comparative studies of the evolution of sexual signal characters. 
    more » « less