Summary Photoprotection against excess light via nonphotochemical quenching (NPQ) is indispensable for plant survival. However, slow NPQ relaxation under low light conditions can decrease yield of field‐grown crops up to 40%.Using semi‐high‐throughput assay, we quantified the kinetics of NPQ and photosystem II operating efficiency (ΦPSII) in a replicated field trial of more than 700 maize (Zea mays) genotypes across 2 yr. Parametrized kinetics data were used to conduct genome‐wide association studies.For six candidate genes involved in NPQ and ΦPSII kinetics in maize the loss of function alleles of orthologous genes in Arabidopsis (Arabidopsis thaliana) were characterized: two thioredoxin genes, and genes encoding a transporter in the chloroplast envelope, an initiator of chloroplast movement, a putative regulator of cell elongation and stomatal patterning, and a protein involved in plant energy homeostasis.Since maize and Arabidopsis are distantly related, we propose that genes involved in photoprotection and PSII function are conserved across vascular plants. The genes and naturally occurring functional alleles identified here considerably expand the toolbox to achieving a sustainable increase in crop productivity.
more »
« less
Nonphotochemical quenching kinetics GWAS in sorghum identifies genes that may play conserved roles in maize and Arabidopsis thaliana photoprotection
SUMMARY Photosynthetic organisms must cope with rapid fluctuations in light intensity. Nonphotochemical quenching (NPQ) enables the dissipation of excess light energy as heat under high light conditions, whereas its relaxation under low light maximizes photosynthetic productivity. We quantified variation in NPQ kinetics across a large sorghum (Sorghum bicolor) association panel in four environments, uncovering significant genetic control for NPQ. A genome‐wide association study (GWAS) confidently identified three unique regions in the sorghum genome associated with NPQ and suggestive associations in an additional 61 regions. We detected strong signals from the sorghum ortholog ofArabidopsis thaliana Suppressor Of Variegation 3(SVR3) involved in plastid–nucleus signaling. By integrating GWAS results for NPQ across maize (Zea mays) and sorghum‐association panels, we identified a second gene,Non‐yellowing 1(NYE1), originally studied by Gregor Mendel in pea (Pisum sativum) and involved in the degradation of photosynthetic pigments in light‐harvesting complexes. Analysis ofnye1insertion alleles inA. thalianaconfirmed the effect of this gene on NPQ kinetics in eudicots. We extended our comparative genomics GWAS framework across the entire maize and sorghum genomes, identifying four additional loci involved in NPQ kinetics. These results provide a baseline for increasing the accuracy and speed of candidate gene identification for GWAS in species with high linkage disequilibrium.
more »
« less
- Award ID(s):
- 2142993
- PAR ID:
- 10555841
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 119
- Issue:
- 6
- ISSN:
- 0960-7412
- Format(s):
- Medium: X Size: p. 3000-3014
- Size(s):
- p. 3000-3014
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Miscanthusholds a promise as a biocrop due to its high yield, perenniality and ability to grow on infertile soils. However, the current commercial biomass production ofMiscanthusis mostly limited to a single sterile triploid clone ofM.×giganteus. Nevertheless, parental species ofM.×giganteus, MiscanthussacchariflorusandMiscanthussinensiscontain vast genetic diversity for crop improvement. WithM. sacchariflorushaving a natural geographic distribution in cold‐temperate northeast China and eastern Russia, we hypothesised that it has substantial variation in physiological response to chilling. Using a semi‐high‐throughput method, we phenotyped 209M. sacchariflorusgenotypes belonging to six genetic groups for non‐photochemical quenching (NPQ) and photosystem II efficiency (ΦPSII) kinetics under warm and chilling treatments in three growing seasons. In response to the chilling treatment, all genetic groups exhibited an increase in NPQ induction rate indicating faster activation of NPQ in light. Notably, under chilling, the Korea/NE China/Russia 2x and N China 2x groups stood out for the highest NPQ rate in light and the highest steady‐state NPQ in light. This NPQ phenotype may contribute adaptation to chilling during bright, cold mornings of spring and early autumn in temperate climates, when faster NPQ would better protect from oxidative stress. Such enhanced adaptation could expand the growing season and thus productivity at a given location or expand the range of economically viable growing locations to higher latitudes and altitudes. A genome‐wide association study identified 126 unique SNPs associated with NPQ and ΦPSII traits. Among the identified candidate genes were enzymes involved in the ascorbate recycle and shikimate pathway, gamma‐aminobutyric acid and cation efflux transporters. Identifying natural variation and genes involved in NPQ and ΦPSII kinetics considerably enlarges the toolbox for breeding and/or engineeringMiscanthuswith optimised photosynthesis under warm and chilling conditions for sustainable feedstock production for bioenergy. Chilling affects the productivity and geographical distribution of most crops. Using a semi‐high‐throughput approach to investigate photosynthesis‐related traits, we characterised variation existing in the bioenergy cropMiscanthusunder chilling and warm conditions and identified potential genes associated with it. Under chilling, two genetic groups from the northern edge ofMiscanthusdistribution stood out for faster activation of photoprotection. This trait may contribute adaptation to chilling in temperate climates, when faster photoprotection would better defend from oxidative stress. Enhanced chilling adaptation could expand the growing season and thus productivity or enlarge the range of growing locations.more » « less
-
Advances in quantitative genetics have enabled researchers to identify genomic regions associated with changes in phenotype. However, genomic regions can contain hundreds to thousands of genes, and progressing from genomic regions to candidate genes is still challenging. In genome-wide association studies (GWAS) measuring elemental accumulation (ionomic) traits, a mere 5% of loci are associated with a known ionomic gene - indicating that many causal genes are still unknown. To select candidates for the remaining 95% of loci, we developed a method to identify conserved genes underlying GWAS loci in multiple species. For 19 ionomic traits, we identified 14,336 candidates across Arabidopsis, soybean, rice, maize, and sorghum. We calculated the likelihood of candidates with random permutations of the data and determined that most of the top 10% of candidates were orthologous genes linked to GWAS loci across all five species. The candidate list also includes orthologous genes with previously established ionomic functions in Arabidopsis and rice. Our methods highlight the conserved nature of ionomic genetic regulators and enable the identification of previously unknown ionomic genes.more » « less
-
Abstract Aldoximes are amino acid derivatives that serve as intermediates for numerous specialized metabolites including cyanogenic glycosides, glucosinolates, and auxins. Aldoxime formation is mainly catalyzed by cytochrome P450 monooxygenases of the 79 family (CYP79s) that can have broad or narrow substrate specificity. Except for SbCYP79A1, aldoxime biosynthetic enzymes in the cereal sorghum (Sorghum bicolor) have not been characterized. This study identified nine CYP79-encoding genes in the genome of sorghum. A phylogenetic analysis of CYP79 showed that SbCYP79A61 formed a subclade with maize ZmCYP79A61, previously characterized to be involved in aldoxime biosynthesis. Functional characterization of this sorghum enzyme using transient expression in Nicotiana benthamiana and stable overexpression in Arabidopsis thaliana revealed that SbCYP79A61 catalyzes the production of phenylacetaldoxime (PAOx) from phenylalanine but, unlike the maize enzyme, displays no detectable activity against tryptophan. Additionally, targeted metabolite analysis after stable isotope feeding assays revealed that PAOx can serve as a precursor of phenylacetic acid (PAA) in sorghum and identified benzyl cyanide as an intermediate of PAOx-derived PAA biosynthesis in both sorghum and maize. Taken together, our results demonstrate that SbCYP79A61 produces PAOx in sorghum and may serve in the biosynthesis of other nitrogen-containing phenylalanine-derived metabolites involved in mediating biotic and abiotic stresses.more » « less
-
ABSTRACT Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti . For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association. IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti , an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations.more » « less