skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep learning probability flows and entropy production rates in active matter
Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. They involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry. Yet, their efficient computation has remained elusive, as they depend on the system’s unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework to estimate the score of this density. We show that the score, together with the microscopic equations of motion, gives access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles. To represent the score, we introduce a spatially local transformer network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of active particles undergoing motility-induced phase separation (MIPS). We show that a single network trained on a system of 4,096 particles at one packing fraction can generalize to other regions of the phase diagram, including to systems with as many as 32,768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.  more » « less
Award ID(s):
2012510
PAR ID:
10555869
Author(s) / Creator(s):
;
Publisher / Repository:
Proc. Nat. Acad. Sci., USA
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
25
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Some microscopic dynamics are also macroscopically irreversible, dissipating energy and producing entropy. For many-particle systems interacting with deterministic thermostats, the rate of thermodynamic entropy dissipated to the environment is the average rate at which phase space contracts. Here, we use this identity and the properties of a classical density matrix to derive upper and lower bounds on the entropy flow rate from the spectral properties of the local stability matrix. These bounds are an extension of more fundamental bounds on the Lyapunov exponents and phase space contraction rate of continuous-time dynamical systems. They are maximal and minimal rates of entropy production, heat transfer, and transport coefficients set by the underlying dynamics of the system and deterministic thermostat. Because these limits on the macroscopic dissipation derive from the density matrix and the local stability matrix, they are numerically computable from the molecular dynamics. As an illustration, we show that these bounds are on the electrical conductivity for a system of charged particles subject to an electric field. 
    more » « less
  2. Abstract The method of choice for integrating the time-dependent Fokker–Planck equation (FPE) in high-dimension is to generate samples from the solution via integration of the associated stochastic differential equation (SDE). Here, we study an alternative scheme based on integrating an ordinary differential equation that describes the flow of probability. Acting as a transport map, this equation deterministically pushes samples from the initial density onto samples from the solution at any later time. Unlike integration of the stochastic dynamics, the method has the advantage of giving direct access to quantities that are challenging to estimate from trajectories alone, such as the probability current, the density itself, and its entropy. The probability flow equation depends on the gradient of the logarithm of the solution (its ‘score’), and so isa-prioriunknown. To resolve this dependence, we model the score with a deep neural network that is learned on-the-fly by propagating a set of samples according to the instantaneous probability current. We show theoretically that the proposed approach controls the Kullback–Leibler (KL) divergence from the learned solution to the target, while learning on external samples from the SDE does not control either direction of the KL divergence. Empirically, we consider several high-dimensional FPEs from the physics of interacting particle systems. We find that the method accurately matches analytical solutions when they are available as well as moments computed via Monte-Carlo when they are not. Moreover, the method offers compelling predictions for the global entropy production rate that out-perform those obtained from learning on stochastic trajectories, and can effectively capture non-equilibrium steady-state probability currents over long time intervals. 
    more » « less
  3. Active matter and driven systems exhibit statistical fluctuations in density and particle positions that are an indirect indicator of dissipation across length and time scales. Here, we quantitatively relate these fluctuations to a thermodynamic speed limit that constrains the rates of heat and entropy production in nonequilibrium processes. By reparametrizing the speed limit set by the Fisher information, we show how to infer these dissipation rates from directly observable or controllable quantities. This approach can use available experimental data as input and avoid the need for analytically solvable microscopic models or full time-dependent probability distributions. The heat rate we predict agrees with experimental measurements for a pulled Brownian particle and a microtubule active gel, which validates the approach and suggests potential for the design of experiments. 
    more » « less
  4. The probability of finding a spherical “hole” of a given radius r contains crucial structural information about many-body systems. Such hole statistics, including the void conditional nearest-neighbor probability functions GV(r), have been well studied for hard-sphere fluids in d-dimensional Euclidean space Rd. However, little is known about these functions for hard-sphere crystals for values of r beyond the hard-sphere diameter, as large holes are extremely rare in crystal phases. To overcome these computational challenges, we introduce a biased-sampling scheme that accurately determines hole statistics for equilibrium hard spheres on ranges of r that far extend those that could be previously explored. We discover that GV(r) in crystal and hexatic states exhibits oscillations whose amplitudes increase rapidly with the packing fraction, which stands in contrast to GV(r) that monotonically increases with r for fluid states. The oscillations in GV(r) for 2D crystals are strongly correlated with the local orientational order metric in the vicinity of the holes, and variations in GV(r) for 3D states indicate a transition between tetrahedral and octahedral holes, demonstrating the power of GV(r) as a probe of local coordination geometry. To further study the statistics of interparticle spacing in hard-sphere systems, we compute the local packing fraction distribution f(ϕl) of Delaunay cells and find that, for d ≤ 3, the excess kurtosis of f(ϕl) switches sign at a certain transitional global packing fraction. Our accurate methods to access hole statistics in hard-sphere crystals at the challenging intermediate length scales reported here can be applied to understand the important problem of solvation and hydrophobicity in water at such length scales. 
    more » « less
  5. Abstract Statistical thermodynamics is valuable as a conceptual structure that shapes our thinking about equilibrium thermodynamic states. A cloud of unresolved questions surrounding the foundations of the theory could lead an impartial observer to conclude that statistical thermodynamics is in a state of crisis though. Indeed, the discussion about the microscopic origins of irreversibility has continued in the scientific community for more than a hundred years. This paper considers these questions while beginning to develop a statistical thermodynamics for finite non-equilibrium systems. Definitions are proposed for all of the extrinsic variables of the fundamental thermodynamic relation that are consistent with existing results in the equilibrium thermodynamic limit. The probability density function on the phase space is interpreted as a subjective uncertainty about the microstate, and the Gibbs entropy formula is modified to allow for entropy creation without introducing additional physics or modifying the phase space dynamics. Resolutions are proposed to the mixing paradox, Gibbs’ paradox, Loschmidt’s paradox, and Maxwell’s demon thought experiment. Finally, the extrinsic variables of the fundamental thermodynamic relation are evaluated as functions of time and space for a diffusing ideal gas, and the initial and final values are shown to coincide with the expected equilibrium values. 
    more » « less