skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Summer insolation controlled movements of Intertropical Convergence Zone during last glacial cycle in northern South America
Abstract A paradigm in paleoclimatology holds that shifts in the mean position of the Intertropical Convergence Zone were the dominant climatic mechanism controlling rainfall in the tropics during the last glacial period. We present a new paleo-rainfall reconstruction based on speleothem stable oxygen isotopes record from Colombia, which spans most of the last glacial cycle. The strength and positioning of the Intertropical Convergence Zone over northern South America were more strongly affected by summer insolation at high northern latitudes than by local insolation during the last glacial cycle, resulting in an antiphased relationship with climate in the Cariaco Basin. Our data also provide new insight into how orbital forcing amplified/dampened Intertropical Convergence Zone precipitation during millennial-scale events. During Greenland Stadial events, the Intertropical Convergence Zone was positioned close to the latitude of El Peñon, as expressed by more negative δ18O values. Greenland Interstadial events are marked by relatively high stable oxygen isotope values and reduced rainfall in the El Peñon record, suggesting a northward withdrawal of the Intertropical Convergence Zone. During some Heinrich Stadial events, and especially Heinrich Stadial 1, the Intertropical Convergence Zone must have been displaced away from its modern location near El Peñon, as conditions were very dry at both El Peñon and Cariaco.  more » « less
Award ID(s):
1743738
PAR ID:
10555920
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Communications Earth & Environment
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenland stadials and interstadials (GS/GI) were millennial climate oscillations during the last glacial period that were originally identified in Greenland ice cores but that have been correlated with environmental change around much of the globe, including in monsoon regimes, with enhanced monsoon rainfall coincident with North Atlantic warming. Hydroclimate variability associated with GS/GI have been investigated in detail using terrestrial (primarily oxygen isotopes in stalagmites) and marine records, particularly for the Southeast Asian monsoon. However, a considerably smaller number of terrestrial records preserve these events in the Indian summer monsoon (ISM), the primary water source for ~2 billion people across South Asia. Here we present the first glacial-age speleothem stable isotope time series from Nepal, located in the ISM regime. UK-1 is a 187 mm tall aragonite stalagmite from the Pokhara Valley of central Nepal, ~150 km west of Kathmandu. The chronology of UK-1, which was established by 8 U/Th dates, all of which fall in stratigraphic order (within the errors), reveals continuous growth from 34,350-31,500 yr BP (Marine Isotope Stage 3); age uncertainties average ±84 yr. Stable isotope samples were measured every 1 mm, corresponding to a temporal resolution of 18 yr. Oxygen isotope ratios range from -5.6‰ to -7.6‰, and share the same timing and structure as Greenland (inter)stadials GS/GI 6 and 5.2 in the NGRIP record. We interpret this as reflecting an amount effect response to a strengthened ISM driven by more (less) poleward migration of the intertropical convergence zone during periods of northern hemisphere warming (cooling). This clear millennial signal in UK-1 is a somewhat unexpected result given that amount effects in oxygen isotopes in precipitation are weak (R^2=0.1) in this area today. UK-1 carbon isotope ratios range from -3‰ to -6‰ (excluding a small number of negative spikes) and exhibit variability coarsely similar to the NGRIP record, with lower (higher) values generally corresponding to GI (GS), possibly due to prior calcite precipitation in voids above the cave concomitant with changes in precipitation. Some periods of antiphasing between carbon and oxygen are also apparent and may reflect flushing of soil carbon dioxide during particularly wet phases. 
    more » « less
  2. Abrupt climate changes during the last deglaciation have been well preserved in proxy records across the globe. However, one long-standing puzzle is the apparent absence of the onset of the Heinrich Stadial 1 (HS1) cold event around 18 ka in Greenland ice core oxygen isotope δ 18 O records, inconsistent with other proxies. Here, combining proxy records with an isotope-enabled transient deglacial simulation, we propose that a substantial HS1 cooling onset did indeed occur over the Arctic in winter. However, this cooling signal in the depleted oxygen isotopic composition is completely compensated by the enrichment because of the loss of winter precipitation in response to sea ice expansion associated with AMOC slowdown during extreme glacial climate. In contrast, the Arctic summer warmed during HS1 and YD because of increased insolation and greenhouse gases, consistent with snowline reconstructions. Our work suggests that Greenland δ 18 O may substantially underestimate temperature variability during cold glacial conditions. 
    more » « less
  3. For the past few decades, many researchers have sought to understand how tropical hydroclimate responds to climate change via lakes, marine sediments, and speleothems records. Speleothem δ18O records throughout South America have shown that regional rainfall responds to Northern Hemisphere forcing on the millennial scale. Areas under the influence of the South Atlantic Convergence Zone (SACZ) have also shown a close relationship with local insolation on longer timescales. However, apart from the Cruz et al. (2007) record in Southern Brazil, long-term speleothem records throughout the continent have relied primarily on stable oxygen isotopes and are therefore limited to describing large-scale regional variability in rainfall. As such, many areas in South America still lack long-term records of local hydroclimate, which is critical to understanding how different components of the monsoon system respond to orbital and millennial-scale climate change. One proxy that has gained more attention in recent years is trace metal-to-calcium ratios (TM/Ca). Sr, Mg, and Ba to Ca ratios in speleothems are known in certain situations to respond to the degree of Prior Calcite Precipitation (PCP) above a drip site, a phenomenon directly tied to local aridity. In this study, we have obtained high-resolution TM/Ca measurements to pair with stable isotopes from samples spanning 23 to 66 ka from Huagapo Cave in the Peruvian Andes (11.27°S; 75.79°W). TM/Ca ratios in these samples are strongly correlated (R2>0.89), making them suitable for use as PCP proxies. We see that decreases in δ18O during Heinrich events are accompanied by a drop in TM/Ca. The period defined by the MIS 4/3 transition is accompanied by a simultaneous increase in TM/Ca and δ18O. TM/Ca and δ18O negatively correlate with local insolation for the entire record. Interestingly, the Paraíso Cave record from the Amazon Basin shows no correlation between regional or local hydroclimate and insolation during the last glacial period. The discrepancy between the two records and the close relationship between TM/Ca, δ18O, and local insolation in Huagapo samples, may call for a revised interpretation of Andes speleothem δ18O variability, which was originally thought to reflect rainout over the Amazon Basin. 
    more » « less
  4. Abstract Proxy evidences suggest abrupt southward displacements of the intertropical convergence zone (ITCZ) during Heinrich Stadial 1 (HS1) and Younger Dryas (YD) against a long‐term trend of northward ITCZ migration from Last Glacial Maximum to modern climate. Climate model simulations reveal that the abrupt ITCZ changes in HS1 and YD are mainly driven by ice‐sheet‐induced meltwater while the long‐term ITCZ trend primarily results from orbital variations, rising atmospheric greenhouse gases and ice‐sheet retreats during the last deglaciation. Atmospheric energetics analysis elucidates two important processes driven by meltwater—less net radiation entering the top‐of‐atmosphere (TOA) in the Northern Hemisphere than the Southern Hemisphere and a reduced global cross‐equatorial oceanic heat transport from the compensation between Atlantic and Indo‐Pacific heat transports—induce the southward ITCZ shift during HS1. Ice sheet extent changes also create a large interhemispheric TOA radiation asymmetry during HS1, which, however, is not via the surface albedo feedback. 
    more » « less
  5. Glacial-interglacial transitions and abrupt millennial-scale events are the most prominent features in many paleoclimate records. Understanding these oscillations requires high-resolution time series from multiple locations to constrain the latitudinal response to forcings. Few high-resolution records exist from the Southern Hemisphere tropics that predate the last two glaciations. We present a high-resolution speleothem oxygen and carbon isotope record from Huagapo Cave in the Central Peruvian Andes covering Marine Isotope Stage (MIS) 8 glacial and MIS 9 interglacial (339 to 249 ka). Uranium-series dates on three stalagmites (n=18) with small age uncertainty ±1% allows us to resolve abrupt climate events similar in structure and duration to Dansgaard-Oescchger and Heinrich events. The South American Summer Monsoon (SASM) controls modern hydroclimate variability in the Andes, and previous records from Huagapo Cave have provided records of past SASM variability. Termination three (T-III) in our record has a steep increase in δ18O values of 5‰, punctuated by two stadial event decreases of ~3‰ (S8.1 and S8.2). This pattern is mirrored in the δ13C record, indicating that these millennial-scale events record hydroclimate and vegetation productivity changes. The same structure as our T-III record is found in other records globally, where they are noted to be Heinrich-like events. Frequency analysis indicates that the occurrence of these abrupt events changes between glacial cycles. Precession is weakly expressed in the δ18O record during MIS 8; similar to speleothem records from the region dating to the Last Glacial Maximum (LGM). Global ice cover and sea levels were similar in the LGM and MIS 8, but the Milankovitch insolation forcing differed. This change in SASM behavior is not observed in the East Asian monsoon, where the precession signal is dominant throughout. Interglacial precessional control is apparent during the latter half of MIS 9 and during Huagapo Cave intervals dating to MIS 6 and 7. These data indicate that the response to high-latitude forcing in the Southern Hemisphere tropics fluctuates through time, and potential explanations for low-latitude sensitivity to forcing factors are further explored. 
    more » « less