skip to main content


Title: A Young Super Star Cluster Powering a Nebula of Retained Massive Star Ejecta
Abstract

We suggest that “Godzilla” of the lensed Sunburst galaxy (z= 2.37) is a young super star cluster powering a nebula of gravitationally trapped stellar ejecta. Employing Hubble Space Telescope photometry and spectroscopy from the Very Large Telescope (VLT) MUSE and VLT/X-Shooter, we infer the physical and chemical properties of the cluster and nebula, finding that Godzilla is young, 4–6 Myr; massive, 2 × 106M(1000/μ); of stellar metallicity,Z≃ 0.25Z; and has a compact far-UV component of ≲1 pc (1000/μ), whereμis the flux magnification factor. The gas is significantly enriched with N and He, indicating stellar wind material, and has highly elevated O relative to the stellar metallicity, indicating entrainment of core-collapse supernova (CCSN) ejecta. The high density,ne≃ 107−8cm−3, implies a highly pressurized intracluster environment. We propose that the pressure results from CCSN-driven supersonic turbulence in warm, self-shielding gas, which has accumulated in the cluster center after runaway radiative cooling and is dense enough to resist removal by CCSNe. The nebula gas shows subsolar C/O, Ne/O, and Si/O, which may reflect the CCSN element yields for initial stellar masses >40M. A comparison to element yield synthesis models for young star clusters shows that the gas abundances are consistent with complete retention and mixture of stellar winds and CCSN ejecta until the inferred cluster age. The inferred O and He enhancement may have implications for the formation of multiple stellar populations in globular clusters, as stars formed from this gas would contradict the observed abundances of second-population stars.

 
more » « less
PAR ID:
10556037
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
976
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 166
Size(s):
Article No. 166
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Strong lensing offers a precious opportunity for studying the formation and early evolution of super star clusters that are rare in our cosmic backyard. The Sunburst Arc, a lensed Cosmic Noon galaxy, hosts a young super star cluster with escaping Lyman continuum radiation. Analyzing archival Hubble Space Telescope images and emission line data from Very Large Telescope/MUSE and X-shooter, we construct a physical model for the cluster and its surrounding photoionized nebula. We confirm that the cluster is ≲4 Myr old, is extremely massiveM∼ 107M, and yet has a central component as compact as several parsecs, and we find a gas-phase metallicityZ= (0.22 ± 0.03)Z. The cluster is surrounded by ≳105Mof dense clouds that have been pressurized toP∼ 109K cm−3by perhaps stellar radiation at within 10 pc. These should have large neutral columnsNHI> 1022.8cm−2to survive rapid ejection by radiation pressure. The clouds are likely dusty as they show gas-phase depletion of silicon, and may be conducive to secondary star formation ifNHI> 1024cm−2or if they sink farther toward the cluster center. Detecting strong [Niii]λλ1750,1752, we infer heavy nitrogen enrichmentlog(N/O)=0.210.11+0.10. This requires efficiently retaining ≳500Mof nitrogen in the high-pressure clouds from massive stars heavier than 60Mup to 4 Myr. We suggest a physical origin of the high-pressure clouds from partial or complete condensation of slow massive star ejecta, which may have an important implication for the puzzle of multiple stellar populations in globular clusters.

     
    more » « less
  2. We explore the possibility of theN-rich young proto-galaxy GN-z11, recently observed atz = 10.6 by JWST, being the result of the formation of second generation stars from pristine gas and asymptotic giant branch (AGB) ejecta in a massive globular cluster or nuclear star cluster. We show that a second generation forming out of gas polluted by the ejecta of massive AGB stars and mixed with gas of a standard composition accounts for the unusually large N/O in the GN-z11 spectrum. The timing of the evolution of massive (4–7.5 M) AGBs also provides a favorable environment for the growth of a central stellar mass black hole to the AGN stage observed in GN-z11. According to our model, the progenitor system was born when the age of the Universe was ≃260 − 380 Myr, well within the bounds of the pre-reionization epoch.

     
    more » « less
  3. Abstract

    We measure abundances of 12 elements (Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni) in a sample of 86 metal-poor (−2 ≲ [Fe/H] ≲ −1) subgiant stars in the solar neighborhood. Abundances are derived from high-resolution spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope, modeled using iSpec and MOOG. By carefully quantifying the impact of photon-noise (<0.05 dex for all elements), we robustly measure theintrinsicscatter of abundance ratios. At fixed [Fe/H], the rms intrinsic scatter in [X/Fe] ranges from 0.04 (Cr) to 0.16 dex (Na), with a median of 0.08 dex. Scatter in [X/Mg] is similar, and accounting for [α/Fe] only reduces the overall scatter moderately. We consider several possible origins of the intrinsic scatter with particular attention to fluctuations in the relative enrichment by core-collapse supernovae (CCSN) and Type Ia supernovae and stochastic sampling of the CCSN progenitor mass distribution. The stochastic sampling scenario provides a good quantitative explanation of our data if the effective number of CCSN contributing to the enrichment of a typical sample star isN∼ 50. At the median metallicity of our sample, this interpretation implies that the CCSN ejecta are mixed over a gas mass ∼6 × 104Mbefore forming stars. The scatter of elemental abundance ratios is a powerful diagnostic test for simulations of star formation, feedback, and gas mixing in the early phases of the Galaxy.

     
    more » « less
  4. Abstract

    We characterize the multiphase circumgalactic medium (CGM) and galaxy properties atz= 6.0–6.5 in four quasar fields from the James Webb Space Telescope A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) program. We use the Very Large Telescope/X-shooter spectra of quasar J0305–3150 to identify one new metal absorber atz= 6.2713 with multiple transitions (Oi, Mgii, Feii,and Cii). They are combined with the published absorbing systems in Davies et al. at the same redshift range to form a sample of nine metal absorbers atz= 6.03–6.49. We identify eight galaxies within 1000 km s−1and 350 kpc around the absorbing gas from the ASPIRE spectroscopic data, with their redshifts secured by [Oiii] (λλ4959, 5007) doublets and Hβemission lines. Our spectral energy distribution fitting indicates that the absorbing galaxies have stellar masses ranging from 107.2to 108.8Mand metallicity between 0.02 and 0.4 solar. Notably, thez= 6.2713 system in the J0305–3150 field resides in a galaxy overdensity region, which contains two (tentatively) merging galaxies within 350 kpc and seven galaxies within 1 Mpc. We measure the relative abundances ofαelements to iron ([α/Fe]) and find that the CGM gas in the most overdense region exhibits a lower [α/Fe] ratio. Our modeling of the galaxy’s chemical abundance favors a top-heavy stellar initial mass function and hints that we may be witnessing the contribution of the first generation of Population III stars to the CGM at the end of the reionization epoch.

     
    more » « less
  5. Abstract

    Understanding the chemical enrichment of different elements is crucial to gaining a complete picture of galaxy chemical evolution. In this study, we present a new sample of 46 low-redshift, low-mass star-forming galaxies atM*∼ 108−10Malong with two quiescent galaxies atM*∼ 108.8Mobserved with the Keck Cosmic Web Imager, aiming to investigate the chemical evolution of galaxies in the transition zone between Local Group satellites and massive field galaxies. We develop a novel method to simultaneously determine stellar abundances of iron and magnesium in star-forming galaxies. With the gas-phase oxygen abundance (O/H)gmeasured using the strong-line method, we are able to make the first-ever apples-to-apples comparison ofαelements in the stars and the interstellar medium. We find that the [Mg/H]*–[O/H]grelation is much tighter than the [Fe/H]*–[O/H]grelation, which can be explained by the similar production processes ofαelements. Most galaxies in our sample exhibit higher [O/H]gthan [Fe/H]*and [Mg/H]*. In addition, we construct mass–metallicity relations (MZRs) measured as three different elements (Fe*, Mg*, Og). Compared to the gas O-MZR, the stellar Fe- and Mg-MZRs show larger scatter driven by variations in specific star formation rates (sSFR), with star-forming galaxies exhibiting higher sSFR and lower stellar abundances at fixed mass. The excess of [O/H]gcompared to stellar abundances as well as the anticorrelation between sSFR and stellar abundance suggests that galaxy quenching of intermediate-mass galaxies atM*∼ 108−10Mis primarily driven by starvation.

     
    more » « less