CRISPR-Cas–guided base editors convert A•T to G•C, or C•G to T•A, in cellular DNA for precision genome editing. To understand the molecular basis for DNA adenosine deamination by adenine base editors (ABEs), we determined a 3.2-angstrom resolution cryo–electron microscopy structure of ABE8e in a substrate-bound state in which the deaminase domain engages DNA exposed within the CRISPR-Cas9 R-loop complex. Kinetic and structural data suggest that ABE8e catalyzes DNA deamination up to ~1100-fold faster than earlier ABEs because of mutations that stabilize DNA substrates in a constrained, transfer RNA–like conformation. Furthermore, ABE8e’s accelerated DNA deamination suggests a previously unobserved transient DNA melting that may occur during double-stranded DNA surveillance by CRISPR-Cas9. These results explain ABE8e-mediated base-editing outcomes and inform the future design of base editors.
CRISPR-based DNA adenine base editors (ABEs) hold remarkable promises to address human genetic diseases caused by point mutations. ABEs were developed by combining CRISPR-Cas9 with a transfer RNA (tRNA) adenosine deaminase enzyme and through directed evolution, conferring the ability to deaminate DNA. However, the molecular mechanisms driving the efficient DNA deamination in the evolved ABEs remain unresolved. Here, extensive molecular simulations and biochemical experiments reveal the biophysical basis behind the astonishing base editing efficiency of ABE8e, the most efficient ABE to date. We demonstrate that the ABE8e’s DNA deaminase domain, TadA8e, forms remarkably stable dimers compared to its tRNA-deaminating progenitor and that the strength of TadA dimerization is crucial for DNA deamination. The TadA8e dimer forms robust interactions involving its R98 and R129 residues, the RuvC domain of Cas9 and the DNA. These locking interactions are exclusive to ABE8e, distinguishing it from its predecessor, ABE7.10, and are indispensable to boost DNA deamination. Additionally, we identify three critical residues that drive the evolution of ABE8e toward improved base editing by balancing the enzyme’s activity and stability, reinforcing the TadA8e dimer and improving the ABE8e’s functionality. These insights offer new directions to engineer superior ABEs, advancing the design of safer precision genome editing tools.
more » « less- PAR ID:
- 10556053
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 52
- Issue:
- 22
- ISSN:
- 0305-1048
- Format(s):
- Medium: X Size: p. 13931-13944
- Size(s):
- p. 13931-13944
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The partnership of DNA deaminase enzymes with CRISPR-Cas nucleases is now a well-established method to enable targeted genomic base editing. However, an understanding of how Cas9 and DNA deaminases collaborate to shape base editor (BE) outcomes has been lacking. Here, we support a novel mechanistic model of base editing by deriving a range of hyperactive activation-induced deaminase (AID) base editors (hBEs) and exploiting their characteristic diversifying activity. Our model involves multiple layers of previously underappreciated cooperativity in BE steps including: (i) Cas9 binding can potentially expose both DNA strands for ‘capture’ by the deaminase, a feature that is enhanced by guide RNA mismatches; (ii) after strand capture, the intrinsic activity of the DNA deaminase can tune window size and base editing efficiency; (iii) Cas9 defines the boundaries of editing on each strand, with deamination blocked by Cas9 binding to either the PAM or the protospacer and (iv) non-canonical edits on the guide RNA bound strand can be further elicited by changing which strand is nicked by Cas9. Leveraging insights from our mechanistic model, we create novel hBEs that can remarkably generate simultaneous C > T and G > A transitions over >65 bp with significant potential for targeted gene diversification.
-
Abstract Base editors are genome editing tools that enable site‐specific base conversions through the chemical modification of nucleobases in DNA. Adenine base editors (ABEs) convert A ⋅ T to G ⋅ C base pairs in DNA by using an adenosine deaminase enzyme to modify target adenosines to inosine intermediates. Due to the lack of a naturally occurring adenosine deaminase that can modify DNA, ABEs were evolved from a tRNA‐deaminating enzyme, TadA. Previous experiments with an ABE comprising a wild‐type (wt) TadA showed no detectable activity on DNA, and directed evolution was therefore required to enable this enzyme to accept DNA as a substrate. Here we show that wtTadA can perform base editing in DNA in both bacterial and mammalian cells, with a strict sequence motif requirement of T
A C. We leveraged this discovery to optimize a reporter assay to detect base editing levels as low as 0.01 %. Finally, we used this assay along with molecular dynamics simulations of full ABE:DNA complexes to better understand how the sequence recognition of mutant TadA variants change as they accumulate mutations to better edit DNA substrates. -
Abstract Techniques for exclusion of exons from mature transcripts have been applied as gene therapies for treating many different diseases. Since exon skipping has been traditionally accomplished using technologies that have a transient effect, it is particularly important to develop new techniques that enable permanent exon skipping. We have recently shown that this can be accomplished using cytidine base editors for permanently disabling the splice acceptor of target exons. We now demonstrate the application of CRISPR-Cas9 adenine deaminase base editors to disrupt the conserved adenine within splice acceptor sites for programmable exon skipping. We also demonstrate that by altering the amino acid sequence of the linker between the adenosine deaminase domain and the Cas9-nickase or by coupling the adenine base editor with a uracil glycosylase inhibitor, the DNA editing efficiency and exon-skipping rates improve significantly. Finally, we developed a split base editor architecture compatible with adeno-associated viral packaging. Collectively, these results represent significant progress toward permanent in vivo exon skipping through base editing and, ultimately, a new modality of gene therapy for the treatment of genetic diseases.
-
Abstract DNA base editors use deaminases fused to a programmable DNA-binding protein for targeted nucleotide conversion. However, the most widely used TadA deaminases lack post-translational control in living cells. Here, we present a split adenine base editor (sABE) that utilizes chemically induced dimerization (CID) to control the catalytic activity of the deoxyadenosine deaminase TadA-8e. sABE shows high on-target editing activity comparable to the original ABE with TadA-8e (ABE8e) upon rapamycin induction while maintaining low background activity without induction. Importantly, sABE exhibits a narrower activity window on DNA and higher precision than ABE8e, with an improved single-to-double ratio of adenine editing and reduced genomic and transcriptomic off-target effects. sABE can achieve gene knockout through multiplex splice donor disruption in human cells. Furthermore, when delivered via dual adeno-associated virus vectors, sABE can efficiently convert a single A•T base pair to a G•C base pair on the
PCSK9 gene in mouse liver, demonstrating in vivo CID-controlled DNA base editing. Thus, sABE enables precise control of base editing, which will have broad implications for basic research and in vivo therapeutic applications.