Abstract Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal‐metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50–70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non‐invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel‐running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non‐selected control (C) lines in both locomotor and metabolic activity, withHRmice having increased voluntary wheel‐running behavior and maximal aerobic capacity (VO2max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT‐scanned and three‐dimensional virtual reconstructions of nutrient canals were measured for minimum cross‐sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e.HRvs. C lines). Canals adopted non‐linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from bothHRand C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice fromHRlines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross‐section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies.
more »
« less
Lineage-based scaling of germline intercellular bridges during oogenesis
ABSTRACT The size of subcellular structures must be tightly controlled to maintain normal cell function. Despite its importance, few studies have determined how the size of organelles or other structures is maintained during development, when cells are growing, dividing and rearranging. The developing Drosophila egg chamber is a powerful model in which to study the relative growth rates of subcellular structures. The egg chamber contains a cluster of 16 germline cells, which are connected through intercellular bridges called ring canals. As the egg chamber grows, the germline cells and the ring canals that connect them increase in size. Here, we demonstrate that ring canal size scaling is related to lineage; the largest, ‘first-born’ ring canals increase in size at a relatively slower rate than ring canals derived from subsequent mitotic divisions. This lineage-based scaling relationship is maintained even if directed transport is reduced, ring canal size is altered, or in egg chambers with twice as many germline cells. Analysis of lines that produce larger or smaller mature eggs reveals that different strategies could be used to alter final egg size.
more »
« less
- Award ID(s):
- 2116348
- PAR ID:
- 10556058
- Publisher / Repository:
- Company of Biologists
- Date Published:
- Journal Name:
- Development
- Volume:
- 151
- Issue:
- 16
- ISSN:
- 0950-1991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The trigeminus nerve (cranial nerve V) is a large and significant conduit of sensory information from the face to the brain, with its three branches extending over the head to innervate a wide variety of integumentary sensory receptors, primarily tactile. The paths of the maxillary (V2) and mandibular (V3) divisions of the trigeminus frequently transit through dedicated canals within the bones of the upper and lower jaws, thus allowing this neuroanatomy to be captured in the fossil record and be available to interpretations of sensory ability in extinct taxa. Here, we use microCT and synchrotron scans from 38 extant and fossil species spanning a wide phylogenetic sample across tetrapods to investigate whether maxillary and mandibular canal morphology can be informative of sensory biology in the synapsid lineage. We found that in comparison to an amphibian and sauropsid outgroup, synapsids demonstrate a distinctive evolutionary pattern of change from canals that are highly ramified near the rostral tip of the jaws to canals with increasingly simplified morphology. This pattern is especially evident in the maxillary canal, which came to feature a shortened infraorbital canal terminating in a single large infraorbital foramen that serves as the outlet for branches of V2that then enter the soft tissues of the face. A comparison with modern analogues supports the hypothesis that this morphological change correlates to an evolutionary history of synapsid‐specific innovations in facial touch. We interpret the highly ramified transitional form found in early nonmammalian synapsids as indicative of enhanced tactile sensitivity of the rostrum via direct or proximal contact, similar to tactile specialists such as probing shorebirds and alligators that possess similar proliferative ramifications of the maxillary and mandibular canals. The transition toward a simplified derived form that emerged among Mid‐Triassic prozostrodont cynodonts and is retained among modern mammals is a unique configuration correlated with an equally unique and novel tactile sensory apparatus: mobile mystacial whiskers. Our survey of maxillary and mandibular canals across a phylogenetic and ecological variety of tetrapods highlights the morphological diversity of these structures, but also the need to establish robust form‐function relationships for future interpretations of osteological correlates for sensory biology.more » « less
-
Water stuck in the ear is a common problem during showering, swimming or other water activities. Having water trapped in the ear canal for a long time can lead to ear infections and possibly result in hearing loss. A common strategy for emptying water from the ear canal is to shake the head, where high acceleration helps remove the water. In this present study, we rationalize the underlying mechanism of water ejection/removal from the ear canal by performing experiments and developing a stability theory. From the experiments, we measure the critical acceleration to remove the trapped water inside different sizes of canals. Our theoretical model, modified from the Rayleigh–Taylor instability, can explain the critical acceleration observed in experiments, which strongly depends on the radius of the ear canal. The resulting critical acceleration tends to increase, especially in smaller ear canals, which indicates that shaking heads for water removal can be more laborious and potentially threatening to children due to their small size of the ear canal compared with adults.more » « less
-
ABSTRACT The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.more » « less
-
Abstract Collective migration of epithelial cells drives diverse tissue remodeling processes. In many cases, a free tissue edge polarizes the cells to promote directed motion, but how edge-free or closed epithelia initiate migration remains unclear. Here, we show that the rotational migration of follicular epithelial cells in theDrosophilaegg chamber is a self-organizing process. Combining experiments and theoretical modeling, we identify a positive feedback loop in which the mechanosensitive behavior of the atypical cadherin Fat2 synergizes with the rigid-body dynamics of the egg chamber to both initiate and sustain rotation. Mechanical constraints arising from cell–cell interactions and tissue geometry further align this motion around the egg chamber’s anterior–posterior axis. Our findings reveal a biophysical mechanism — combining Fat2-mediated velocity–polarity alignment, rigid-body dynamics, and tissue geometry — by which a closed epithelial tissue self-organizes into persistent, large-scale rotational migrationin vivo, expanding current flocking theories.more » « less
An official website of the United States government

