skip to main content


Title: Assessing Volumetric Energy Density as a Predictor of Defects in Laser Powder Bed Fusion 316L Stainless Steel
Abstract

Minimizing porosity is a common challenge in powder bed fusion-laser bed (PBF-LB), so predictive modeling to enable parameter selection free of porosity is of great value. Porosity formation may occur through several mechanisms, include keyholing and lack of fusion. Volumetric energy density is often used in the literature to predict defect formation. However, volumetric energy density does not account for the various mechanisms by which porosity forms. In this work, nine LPBF parameter sets spanning variation in laser power, scanning velocity, and hatch spacing, all with the same volumetric energy density, are evaluated with 316L stainless steel. It was found that there are systematic variations in the type and amount of pores between these parameter sets that have the same volumetric density. We show that defect maps comprised of analytical models for defect formation can predict parameter sets with minimal porosity. A modified interpass lack-of-fusion (LOF) porosity criteria and a new spatter-induced intrapass LOF criteria are proposed to improve predictions at low laser powers and scanning velocities, and at high laser powers and scanning velocities, respectively. The results of this work are expected to help accelerate parameter selection for laser powder bed fusion 316L with minimal porosity defects.

 
more » « less
PAR ID:
10556725
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
JOM
Volume:
77
Issue:
2
ISSN:
1047-4838
Format(s):
Medium: X Size: p. 737-748
Size(s):
p. 737-748
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Laser powder bed fusion (LPBF) is an enabling process manufacture of complex metal components. However, LPBF is prone to generate geometrical defects (e.g., porosity, lack of fusion), which causes a significant fatigue scattering. However, LPBF fatigue scattering data and analysis in the literature are not only sparse and limited to tension-compression mode but also inconsistent. This article presents a robust high-frequency fatigue testing method to construct stress-cycle curves of SS 316L to understand the scattering nature and predict the scattering pattern. A series of bending fatigue tests are performed at different stress amplitudes. Two different runout criteria are used to investigate fatigue life, fatigue limits, and scattering. The endurance limit reaches around 300 MPa for the defect size distribution at the selected process space. The defect size-based fatigue limit model is found to underestimate the endurance limit by about 30 MPa when comparing with the experimental data. Fatigue scattering is further calculated by using 95% prediction intervals, showing that low fatigue scattering is present at high stresses while a large variation of fatigue life occurs at stresses near the knee point.

     
    more » « less
  2. In the laser powder bed fusion additive manufacturing process, the quality of fabrications is intricately tied to the laser–matter interaction, specifically the formation of the melt pool. This study experimentally examined the intricacies of melt pool characteristics and surface topography across diverse laser powers and speeds via single-track laser scanning on a bare plate and powder bed for 316L stainless steel. The results reveal that the presence of a powder layer amplifies melt pool instability and worsens irregularities due to increased laser absorption and the introduction of uneven mass from the powder. To provide a comprehensive understanding of melt pool dynamics, a high-fidelity computational model encompassing fluid dynamics, heat transfer, vaporization, and solidification was developed. It was validated against the measured melt pool dimensions and morphology, effectively predicting conduction and keyholing modes with irregular surface features. Particularly, the model explained the forming mechanisms of a defective morphology, termed swell-undercut, at high power and speed conditions, detailing the roles of recoil pressure and liquid refilling. As an application, multiple-track simulations replicate the surface features on cubic samples under two distinct process conditions, showcasing the potential of the laser–matter interaction model for process optimization.

     
    more » « less
  3. Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock. VED has been traditionally used to inform the quality of the printed part but different values of VED are presented as optimal values for certain material systems. An optimal VED value can be maintained by changing the key process parameters so that various combinations yield a constant value. In this study, an optimal constant VED value is maintained while printing SS316L with variable key processing parameters. Porosity analysis is performed using optical microscopy, as well as X-ray computed tomography, to reveal the volume density and distribution of those pores. Two primary defect categories are identified, namely lack of fusion and porosity induced by balling defects. The findings indicate that, even at optimal VED, variations in process parameters can significantly influence defect type, underscoring the sensitivity of defect formation to the variation of these parameters. Furthermore, a minor change in the build rate, driven by adjustments in process parameters, was found to influence defect categories. These findings emphasize that fine tuning the process parameters and build rate is essential to minimize defects. Finally, fiducial marks have been identified as a source of unintentional porosity defects. These results enable the refinement of process parameters, ultimately optimizing LPBF to achieve enhanced material density and expedite the printing.

     
    more » « less
  4. The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning. 
    more » « less
  5. Abstract

    The process instabilities intrinsic to the localized laser-powder bed interaction cause the formation of various defects in laser powder bed fusion (LPBF) additive manufacturing process. Particularly, the stochastic formation of large spatters leads to unpredictable defects in the as-printed parts. Here we report the elimination of large spatters through controlling laser-powder bed interaction instabilities by using nanoparticles. The elimination of large spatters results in 3D printing of defect lean sample with good consistency and enhanced properties. We reveal that two mechanisms work synergistically to eliminate all types of large spatters: (1) nanoparticle-enabled control of molten pool fluctuation eliminates the liquid breakup induced large spatters; (2) nanoparticle-enabled control of the liquid droplet coalescence eliminates liquid droplet colliding induced large spatters. The nanoparticle-enabled simultaneous stabilization of molten pool fluctuation and prevention of liquid droplet coalescence discovered here provide a potential way to achieve defect lean metal additive manufacturing.

     
    more » « less