skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Legionella effector RavD binds phosphatidylinositol-3-phosphate and helps suppress endolysosomal maturation of the Legionella-containing vacuole
Award ID(s):
1750742
PAR ID:
10557072
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society for Biochemistry and Molecular Biology
Date Published:
Journal Name:
Journal of Biological Chemistry
Volume:
294
Issue:
16
ISSN:
0021-9258
Page Range / eLocation ID:
6405 to 6415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manipulation of host phosphoinositide lipids has emerged as a key survival strategy utilized by pathogenic bacteria to establish and maintain a replication-permissive compartment within eukaryotic host cells. The human pathogen, Legionella pneumophila, infects and proliferates within the lung’s innate immune cells causing severe pneumonia termed Legionnaires’ disease. This pathogen has evolved strategies to manipulate specific host components to construct its intracellular niche termed the Legionella-containing vacuole (LCV). Paramount to LCV biogenesis and maintenance is the spatiotemporal regulation of phosphoinositides, important eukaryotic lipids involved in cell signaling and membrane trafficking. Through a specialized secretion system, L. pneumophila translocates multiple proteins that target phosphoinositides in order to escape endolysosomal degradation. By specifically binding phosphoinositides, these proteins can anchor to the cytosolic surface of the LCV or onto specific host membrane compartments, to ultimately stimulate or inhibit encounters with host organelles. Here, we describe the bacterial proteins involved in binding and/or altering host phosphoinositide dynamics to support intracellular survival of L. pneumophila. 
    more » « less
  2. Session co-presenters: Weir M, Mitchell J, Fung D, Ross K, Hannapel L, Edens C. Session: Legionella in the Built Environment: Emerging research, practices, and policies. American Public Health Association (APHA), Atlanta, GA, November 12, 2023. 
    more » « less
  3. Legionella pneumophila is an opportunistic human pathogen that can cause a severe and deadly form of pneumonia called Legionnaires’ disease. Over the past decade, the number of reported cases of Legionnaires’ disease has quadrupled in the U.S., with 8,000-18,000 hospitalizations per year at a yearly incidence rate of 1.7/100,000. Within the water sector, this public health risk is exacerbated by the proliferation of L. pneumophila in complex biological matrices such as biofilms and within free-living amoebae. Traditional disinfection technologies fail to effectively mitigate this emerging pathogen issue, necessitating development of point-of-use (POU) technologies with high inactivation efficacy. We aim to harness microwave (MW) radiation and take advantage of its synergy with ion-mediated toxicity to effectively inactivate L. pneumophila. In this study, planktonic L. pneumophila cells have been exposed to ionic and nano-particulate silver. While neither treatment alone is effective over a short exposure period, a combined treatment of silver with MW radiation successfully achieves 3-4 log removal within 6 min of irradiation, as shown in Figure 1. Enhanced toxicity was observed when L. pneumophila was pre-exposed to either treatment (i.e., MW heating or silver exposure) prior to exposure to the other; these results suggest that silver ion transport within the cells is facilitated by heat treatment. Data presented here serve as the proof-of-concept toward the development of a L pneumophila inactivation device that harnesses MW radiation and can potentially mitigate this public health risk, even if the cells are protected by amoebae or biofilms. 
    more » « less