skip to main content


Title: Synthesis and reduction of [(C 5 H 4 SiMe 3 ) 2 Ln(μ-OR)] 2 (Ln = La, Ce) complexes: structural effects of bridging alkoxides

Alcoholysis of (C5H4SiMe)3Ln results in bimetallic complexes with unexpected decreases in Ln⋯Ln distances as bridging alkoxides become bulkier. These complexes were characterized by DOSY NMR, CV, DPV, and a LaIIspecies was observed by EPR.

 
more » « less
Award ID(s):
1900248 2117549
PAR ID:
10557280
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Heat capacities and enthalpies of formation of BaGd2O4were determined by high‐temperature differential scanning calorimetry and high‐temperature oxide melt solution calorimetry, respectively. Thermodynamic stability of BaLn2O4compounds increases with decreasing Ln3+ionic radius. Previously reported data on BaNd2O4and BaSm2O4corroborate this trend. Missing data for compounds in BaO–Ln2O3(Ln = La, Pr, Eu, Er) systems were estimated from established relations, thermodynamic assessment was performed, and binary phase diagrams were calculated.

     
    more » « less
  2. Abstract

    Lanthanide triflates have been used to incorporate NdIIIand SmIIIions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdIIcryptand complex, assign a 4f4electron configuration to this ion.

     
    more » « less
  3. Abstract

    Lanthanide triflates have been used to incorporate NdIIIand SmIIIions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdIIcryptand complex, assign a 4f4electron configuration to this ion.

     
    more » « less
  4. Four β-carbonylphosphine oxide compounds were complexed with four Ln(NO3)3salts (Ln = Sm, Eu, Tb, Dy). The Ln–ligand complexes were characterized in the solid state (IR, CHN) and as solutions in acetonitrile (NMR, LR-MS, photophysical properties).

     
    more » « less
  5. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less