skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 12, 2025

Title: An outcome-defining role for the triple-helical domain in regulating collagen-I assembly
Collagens are the foundational component of diverse tissues, including skin, bone, cartilage, and basement membranes, and are the most abundant protein class in animals. The fibrillar collagens are large, complex, multidomain proteins, all containing the characteristic triple helix motif. The most prevalent collagens are heterotrimeric, meaning that cells express at least two distinctive procollagen polypeptides that must assemble into specific heterotrimer compositions. The molecular mechanisms ensuring correct heterotrimeric assemblies are poorly understood – even for the most common collagen, type-I. The longstanding paradigm is that assembly is controlled entirely by the ~30 kDa globular C-propeptide (C-Pro) domain. Still, this dominating model for procollagen assembly has left many questions unanswered. Here, we show that the C-Pro paradigm is incomplete. In addition to the critical role of the C-Pro domain in templating assembly, we find that the amino acid sequence near the C terminus of procollagen’s triple-helical domain plays an essential role in defining procollagen assembly outcomes. These sequences near the C terminus of the triple-helical domain encode conformationally stabilizing features that ensure only desirable C-Pro-mediated trimeric templates are committed to irreversible triple-helix folding. Incorrect C-Pro trimer assemblies avoid commitment to triple-helix formation thanks to destabilizing features in the amino acid sequences of their triple helix. Incorrect C-Pro assemblies are consequently able to dissociate and search for new binding partners. These findings provide a distinctive perspective on the mechanism of procollagen assembly, revealing the molecular basis by which incorrect homotrimer assemblies are avoided and setting the stage for a deeper understanding of the biogenesis of this ubiquitous protein.  more » « less
Award ID(s):
2236194
PAR ID:
10557284
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
46
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Assembling peptides allow the creation of structurally complex materials, where amino acid selection influences resulting properties. We present a synergistic approach of experiments and simulations for examining the influence of natural and non-natural amino acid substitutions via incorporation of charged residues and a reactive handle on the thermal stability and assembly of multifunctional collagen mimetic peptides (CMPs). Experimentally, we observed inclusion of charged residues significantly decreased the melting temperature of CMP triple helices with further destabilization upon inclusion of the reactive handle. Atomistic simulations of a single CMP triple helix in explicit water showed increased residue-level and helical structural fluctuations caused by the inclusion of the reactive handle; however, these atomistic simulations cannot be used to predict changes in CMP melting transition. Coarse-grained (CG) simulations of CMPs at experimentally relevant solution conditions, showed, qualitatively, the same trends as experiments in CMP melting transition temperature with CMP design. These simulations show that when charged residues are included electrostatic repulsions significantly destabilize the CMP triple helix and that an additional inclusion of a reactive handle does not significantly change the melting transition. Based on findings from both experiments and simulations, the sequence design was refined for increased CMP triple helix thermal stability, and the reactive handle was utilized for the incorporation of the assembled CMPs within covalently crosslinked hydrogels. Overall, a unique approach was established for predicting stability of CMP triple helices for various sequences prior to synthesis, providing molecular insights for sequence design towards the creation of bulk nanostructured soft biomaterials. 
    more » « less
  2. Collagen, a vital protein that provides strength to various body tissues, has a triple helix structure containing three polypeptide chains. The chains are composed mostly of a tripeptide of glycine (G), proline (P), and hydroxyproline (O). Using molecular dynamics simulations and theoretical analysis, the study examines the mechanical response of collagen triple helix structures, made up of three different tripeptide units, when subjected to different fracture loading modes. The results show that collagen with GPO tripeptide units at their C-terminal are mechanically stronger than the POG and OGP units with a single amino-acid frame shift. Our work shows that the N-terminal has less effect on collagen fracture than the C-terminal. The differences in mechanical response are explained by the heterogenous rigidity of the amino acid backbone and the resulting shear lag effect near the terminal. The findings have potential applications in developing tough synthetic collagen for building materials and may stimulate further studies on the connection between terminal repeats and the mechanical-thermal behavior of other structural proteins such as silk, elastin, fibrin, and keratin. 
    more » « less
  3. Peptide-based helical barrels are a noteworthy building block for hierarchical assembly, with a hydrophobic cavity that can serve as a host for cargo. In this study, disulfide-stapled helical barrels were synthesized containing ligands for metal ions on the hydrophilic face of each amphiphilic peptide helix. The major product of the disulfide-stapling reaction was found to be composed of five amphiphilic peptides, thereby going from a 16-amino-acid peptide to a stapled 80-residue protein in one step. The structure of this pentamer, 5HB1, was optimized in silico, indicating a significant hydrophobic cavity of ~6 Å within a helical barrel. Metal-ion-promoted assembly of the helical barrel building blocks generated higher order assemblies with a three-dimensional (3D) matrix morphology. The matrix was decorated with hydrophobic dyes and His-tagged proteins both before and after assembly, taking advantage of the hydrophobic pocket within the helical barrels and coordination sites within the metal ion-peptide framework. As such, this peptide-based biomaterial has potential for a number of biotechnology applications, including supplying small molecule and protein growth factors during cell and tissue growth within the matrix. 
    more » « less
  4. Collagen mimetic peptides are composed of triple helices. Triple helical formation frequently utilizes charge pair interactions to direct protein assembly. The design of synthetic triple helices is challenging due to the large number of competing species and the overall fragile nature of collagen mimetics. A successfully designed triple helix incorporates both positive and negative criteria to achieve maximum specificity of the supramolecular assembly. Intrahelical charge pair interactions, particularly those involved in lysine–aspartate and lysine–glutamate pairs, have been especially successful both in driving helix specificity and for subsequent stabilization by covalent capture. Despite this progress, the important sequential and geometric relationships of charged residues in a triple helical context have not been fully explored for either supramolecular assembly or covalent capture stabilization. In this study, we compare the eight canonical axial and lateral charge pairs of lysine and arginine with glutamate and aspartate to their noncanonical, reversed charge pairs. These findings are put into the context of collagen triple helical design and synthesis. 
    more » « less
  5. Parkinson’s disease is the second most common neurodegenerative disease which is caused by a lack of dopamine in the brain. Parkinson 22 is a form of Parkinson’s disease caused by variations in the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) protein. This study investigates an aspartic acid-to-alanine swap on amino acid position 130 (D130A) of the CHCHD2 protein. We have employed protein modeling, conservation analysis, and molecular dynamics simulations to gain an understanding of the effects of the D130A variant on CHCHD2 protein structure and movement. 
    more » « less