Abstract Biogeochemical cycling has often been characterized by physical and microbial processes, yet animals can be essential mediators of energy and nutrients in ecosystems. Excretion by aggregated animals can be an important local source of inorganic nutrients in green food webs; however, whether animals are a source of dissolved energy that can support brown food webs is understudied.We tested whether animal aggregations are a substantial flux of bioavailable dissolved organic matter (DOM) by studying spatially stable, biogeochemical hotspots formed by filter‐feeding freshwater mussels. We used parallel‐factor analysis to quantify DOM fluorescent components composition of mussel excretion and expected digestive breakdown of particulate food sources would lead to excretion of labile DOM. Next, we combined measured excretion rates of DOM, ammonium (, N) and phosphorous (SRP; P) for 22 species with biomass estimates for 14 aggregations to quantify contributions of DOM, N and P to local availability. Because mussels occupy distinct stoichiometric niches, we anticipated that differences in species biomass and assemblage structure would elicit different flux and stoichiometries of aggregate excretion.Aggregate dissolved organic carbon (DOC) excretion was minor (1%–11%) compared to N (12%–2,860%) and P (1%–97%), yet generalities across assemblages emerged regarding organic matter transformation by mussels towards labile protein‐like compounds compared to abundant aromatic, humic compounds in ambient water.Aggregate excretion of labile DOM was a substantial pool of bioavailable energy, contributing 2%–114% of local labile DOM. Spatial differences in assemblage structure led to strong differences in aggregate flux and stoichiometry driven by biomass and stoichiometric trait expression of species with contrasting dominance patterns.Under the nutrient conditions of our study (high C:nutrient), biogeochemical hotspots associated with low‐trophic position animal biomass may indirectly control energy flow to the brown food web by shifting C:nutrient stoichiometry available to microbes or directly by increasing the flux of microbially available DOM. Collectively, our results highlight a potentially substantial flux of labile energy and nutrients to microbial communities through the transformation of ingested organic matter by aggregations of animals and emphasize that shared functional trait classification may not translate into shared ecological function. A freePlain Language Summarycan be found within the Supporting Information of this article.
more »
« less
This content will become publicly available on August 1, 2025
Species identity and diversity of filter‐feeding bivalves impact green and brown food webs
Abstract In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly supportgreen food websbased on primary production andbrown food websbased on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs.We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity.Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs.
more »
« less
- Award ID(s):
- 1831512
- PAR ID:
- 10557316
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Freshwater Biology
- Volume:
- 69
- Issue:
- 8
- ISSN:
- 0046-5070
- Page Range / eLocation ID:
- 1104 to 1117
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Freshwater mussels are important for nutrient cycling and ecosystem health as they filter feed on their surrounding water. This filter feeding makes these bivalves especially sensitive to conditions in their environment. Gut microbial communities (microbiomes) have been recognised as important to both host organism and ecosystem health; however, how freshwater mussel microbiomes are organised and influenced is unclear.In this study, the gut bacterial microbiome of Threeridge mussel,Amblema plicata, was compared across two river basins, five rivers, and nine local sites in the south‐eastern U.S.A. Mussel gut tissue was dissected, DNA extracted, and the microbiome characterised by high throughput sequencing of the V4 region of the 16S ribosomal RNA gene.Planctomycetes, Firmicutes, and Cyanobacteria were the most common bacterial phyla within the guts of all sampledA.plicata. However, the relative abundances of these major bacterial phyla differed between mussels sampled from different rivers and river basins, as did the relative abundance of specific bacterial operational taxonomic units (OTUs). Despite these differences, a core microbiome was identified across all mussels, with eight OTUs being consistent members of theA.plicatamicrobiome at all sites, the most abundant OTU identifying as a member of the family Planctomycetaceae. Geographic distance between sites was not correlated with similarity in the structure of the gut microbiome, which was more related to site physicochemistry.Overall, these results suggest that while physicochemical conditions affect the composition of transient bacteria in the Threeridge mussel gut microbiome, the core microbiome is largely unaffected, and a portion of theA.plicatamicrobiome is retained regardless of the river system.How long transient bacteria remain in the gut, and to what extent these transient microbes aid in host function is still unknown. Core microbiota have been found to aid in multiple functions within animal hosts, and within freshwater mussels this core microbiome may aid in nutrient processing and cycling. Therefore, it is important to look at both transient and core microbes when studying the structure of freshwater invertebrate microbiomes.more » « less
-
Abstract Mixotrophs are ubiquitous and integral to microbial food webs, but their impacts on the dynamics and functioning of broader ecosystems are largely unresolved.Here, we show that mixotrophy produces a unique type of food web module that exhibits unusual ecological dynamics, with surprising consequences for carbon flux under warming. We develop a generalizable model of a mixotrophic food web module that incorporates dynamic switching between phototrophy and phagotrophy to assess ecological dynamics and total system CO2flux.We find that warming switches mixotrophic systems between alternative stable carbon states—including a phototrophy‐dominant carbon sink state, a phagotrophy‐dominant carbon source state and cycling between these two. Moreover, warming always shifts this mixotrophic system from a carbon sink state to a carbon source state, but a coordinated increase in nutrients can erase early warning signals of this transition and expand hysteresis.This suggests that mixotrophs can generate critical carbon tipping points under warming that will be more abrupt and less reversible when combined with increased nutrient levels, having widespread implications for ecosystem functioning in the face of rapid global change. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Functional traits are characteristics of an organism that represent how it interacts with its environment and can influence the structure and function of ecosystems. Ecological stoichiometry provides a framework to understand ecosystem structure and function by modeling the coupled flow of elements (e.g. carbon [C], nitrogen [N], phosphorus [P]) between consumers and their environment. Animals tend to be homeostatic in their nutrient requirements and preferentially sequester the element in shortest supply relative to demand, and release relatively more of the element in excess. Tissue stoichiometry is an important functional trait that allows for predictions among the elemental composition of animals, their diet, and their waste products, with important effects on the cycling and availability of nutrients in ecosystems. Here we examined the tissue stoichiometric niches (C:N:P) and nutrient recycling stoichiometries (N:P) of several filter‐feeding freshwater mussels in the subfamily Ambleminae. Despite occupying the same functional‐feeding group and being restricted to a single subfamily‐level radiation, we found that species occupied distinct stoichiometric niches and that these niches varied, in part, as a function of their evolutionary history. The relationship between phylogenetic divergence and functional divergence suggests that evolutionary processes may be shaping niche complementarity and resource partitioning. Tissue and excretion stoichiometry were negatively correlated as predicted by stoichiometric theory. When scaled to the community, higher species richness and phylogenetic diversity resulted in greater functional evenness and reduced functional dispersion. Filter‐feeding bivalves are an ecologically important guild in freshwater ecosystems globally, and our study provides a more nuanced view of the stoichiometric niches and ecological functions performed by this phylogenetically and ecologically diverse assemblage.more » « less
-
Abstract Producer–decomposer interactions within aquatic biofilms can range from mutualistic associations to competition depending on available resources. The outcomes of such interactions have implications for biogeochemical cycling and, as such, may be especially important in northern peatlands, which are a global carbon sink and are expected to experience changes in resource availability with climate change. The purpose of this study was to evaluate the effects of nutrients and organic carbon on the relative proportion of primary producers (microalgae) and heterotrophic decomposers (bacteria and fungi) during aquatic biofilm development in a boreal peatland. Given that decomposers are often better competitors for nutrients than primary producers in aquatic ecosystems, we predicted that labile carbon subsidies would shift the biofilm composition towards heterotrophy owing to the ability of decomposers to outcompete primary producers for available nutrients in the absence of carbon limitation.We manipulated nutrients (nitrate and phosphate) and organic carbon (glucose) in a full factorial design using nutrient‐diffusing substrates in an Alaskan fen.Heterotrophic bacteria were limited by organic carbon and algae were limited by inorganic nutrients. However, the outcomes of competitive interactions depended on background nutrient levels. Heterotrophic bacteria were able to outcompete algae for available nutrients when organic carbon was elevated and nutrient levels remained low, but not when organic carbon and nutrients were both elevated through enrichment.Fungal biomass was significantly lower in the presence of glucose alone, possibly owing to antagonistic interactions with heterotrophic bacteria. In contrast to bacteria, fungi were stimulated along with algae following nutrient enrichment.The decoupling of algae and heterotrophic bacteria in the presence of glucose alone shifted the biofilm trophic status towards heterotrophy. This effect was overturned when nutrients were enriched along with glucose, owing to a subsequent increase in algal biomass in the absence of nutrient limitation.By measuring individual components of the biofilm and obtaining data on the trophic status, we have begun to establish a link between resource availability and biofilm formation in northern peatlands. Our results show that labile carbon subsidies from outside sources have the potential to disrupt microbial coupling and shift the metabolic balance in favour of heterotrophy. The extent to which this occurs in the future will probably depend on the timing and composition of bioavailable nutrients delivered to surface waters with environmental change (e.g. permafrost thaw).more » « less