skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Very local impact on the spectrum of cosmic-ray nuclei below 100 TeV
Recent measurements of primary and secondary CR spectra, their arrival directions, and our improved knowledge of the magnetic field geometry around the heliosphere allow us to set a bound on the distance beyond which a puzzling 10-TeV ‘‘bump” and certain related spectral features cannot originate. The sharpness of the spectral breaks associated with the bump, the abrupt change of the CR intensity across the local magnetic equator (90 pitch angle), and the similarity between the primary and secondary CR spectral pat- terns point to a local reacceleration of the bump particles out of the background CRs. We argue that, owing to a steep preexisting CR spectrum, a nearby shock may generate such a bump by boosting particle rigidity by a mere factor of 1.5 in the range below 50 TV. Reaccelerated particles below 0.5 TV are convected with the interstellar medium flow and do not reach the Sun. The particles above this rigidity then form the bump. This single universal process is responsible for the observed spectral features of all CR nuclei, primary and secondary, in the rigidity range below 100 TV. We propose that one viable candidate is the system of shocks associated with Eridani star at 3.2 pc of the Sun, which is well aligned with the direction of the local magnetic field. Other shocks, such as old supernova shells, may produce a similar effect. We provide a simple formula that reproduces the spectra of all CR species with only three parameters uniquely derived from the CR proton data. We show how our formalism predicts helium, boron, carbon, oxygen, and iron spectra, for which accurate data in GV-TV range exist. Our model thus unifies all the CR spectral features observed below 50 TV.  more » « less
Award ID(s):
2109103
PAR ID:
10557333
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Editor(s):
Seo, Eun-Suk
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Advances in Space Research
Edition / Version:
1
Volume:
74
Issue:
9
ISSN:
0273-1177
Page Range / eLocation ID:
4264 to 4275
Subject(s) / Keyword(s):
Cosmic rays Propagation Shock wave Bow shock Anisotropy Epsilon Eridani star
Format(s):
Medium: X Size: 1.4MB Other: pdf
Size(s):
1.4MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent precise measurements of primary and secondary cosmic-ray (CR) species in the teravolt rigidity domain have unveiled a bump in their spectra, located between 0.5 and 50 TV. We argue that a local shock may generate such a bump by increasing the rigidity of the preexisting CRs below 50 TV by a mere factor of ∼1.5. Reaccelerated particles below ∼0.5 TV are convected with the interstellar medium flow and do not reach the Sun, thus creating the bump. This single universal process is responsible for the observed spectra of all CR species in the rigidity range below 100 TV. We propose that one viable shock candidate is the Epsilon Eridani star at 3.2 pc from the Sun, which is well aligned with the direction of the local magnetic field. Other shocks, such as old supernova shells, may produce a similar effect. We provide a simple formula, Equation (9), that reproduces the spectra of all CR species with only two nonadjustable shock parameters, uniquely derived from the proton data. We show how our formalism predicts helium and carbon spectra and the B/C ratio. 
    more » « less
  2. ABSTRACT We present the first simulations evolving resolved spectra of cosmic rays (CRs) from MeV–TeV energies (including electrons, positrons, (anti)protons, and heavier nuclei), in live kinetic-magnetohydrodynamics galaxy simulations with star formation and feedback. We utilize new numerical methods including terms often neglected in historical models, comparing Milky Way analogues with phenomenological scattering coefficients ν to Solar-neighbourhood [Local interstellar medium (LISM)] observations (spectra, B/C, e+/e−, $$\mathrm{\bar{p}}/\mathrm{p}$$, 10Be/9Be, ionization, and γ-rays). We show it is possible to reproduce observations with simple single-power-law injection and scattering coefficients (scaling with rigidity R), similar to previous (non-dynamical) calculations. We also find: (1) The circumgalactic medium in realistic galaxies necessarily imposes an $$\sim 10\,$$ kpc CR scattering halo, influencing the required ν(R). (2) Increasing the normalization of ν(R) re-normalizes CR secondary spectra but also changes primary spectral slopes, owing to source distribution and loss effects. (3) Diffusive/turbulent reacceleration is unimportant and generally sub-dominant to gyroresonant/streaming losses, which are sub-dominant to adiabatic/convective terms dominated by $$\sim 0.1-1\,$$ kpc turbulent/fountain motions. (4) CR spectra vary considerably across galaxies; certain features can arise from local structure rather than transport physics. (5) Systematic variation in CR ionization rates between LISM and molecular clouds (or Galactic position) arises naturally without invoking alternative sources. (6) Abundances of CNO nuclei require most CR acceleration occurs around when reverse shocks form in SNe, not in OB wind bubbles or later Sedov–Taylor stages of SNe remnants. 
    more » « less
  3. Abstract The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff.Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space.We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lieof order Brms≃ (50–100) nG (20 Mpc/ds)( 100 kpc/Lcoh)1/2, with dsthe typical intersource separation and Lcohthe magnetic field coherence length. When this is the case,the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E-2.An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV. 
    more » « less
  4. ABSTRACT Models for cosmic ray (CR) dynamics fundamentally depend on the rate of CR scattering from magnetic fluctuations. In the ISM, for CRs with energies ∼MeV-TeV, these fluctuations are usually attributed either to ‘extrinsic turbulence’ (ET) – a cascade from larger scales – or ‘self-confinement’ (SC) – self-generated fluctuations from CR streaming. Using simple analytic arguments and detailed ‘live’ numerical CR transport calculations in galaxy simulations, we show that both of these, in standard form, cannot explain even basic qualitative features of observed CR spectra. For ET, any spectrum that obeys critical balance or features realistic anisotropy, or any spectrum that accounts for finite damping below the dissipation scale, predicts qualitatively incorrect spectral shapes and scalings of B/C and other species. Even if somehow one ignored both anisotropy and damping, observationally required scattering rates disagree with ET predictions by orders of magnitude. For SC, the dependence of driving on CR energy density means that it is nearly impossible to recover observed CR spectral shapes and scalings, and again there is an orders-of-magnitude normalization problem. But more severely, SC solutions with super-Alfvénic streaming are unstable. In live simulations, they revert to either arbitrarily rapid CR escape with zero secondary production, or to bottleneck solutions with far-too-strong CR confinement and secondary production. Resolving these fundamental issues without discarding basic plasma processes requires invoking different drivers for scattering fluctuations. These must act on a broad range of scales with a power spectrum obeying several specific (but plausible) constraints. 
    more » « less
  5. ABSTRACT Cosmic rays (CRs) with energies ≪ TeV comprise a significant component of the interstellar medium (ISM). Major uncertainties in CR behaviour on observable scales (much larger than CR gyroradii) stem from how magnetic fluctuations scatter CRs in pitch angle. Traditional first-principles models, which assume these magnetic fluctuations are weak and uniformly scatter CRs in a homogeneous ISM, struggle to reproduce basic observables such as the dependence of CR residence times and scattering rates on rigidity. We therefore explore a new category of ‘patchy’ CR scattering models, wherein CRs are pre-dominantly scattered by intermittent strong scattering structures with small volume-filling factors. These models produce the observed rigidity dependence with a simple size distribution constraint, such that larger scattering structures are rarer but can scatter a wider range of CR energies. To reproduce the empirically inferred CR scattering rates, the mean free path between scattering structures must be $$\ell _{\rm mfp}\sim 10\, {\rm pc}$$ at GeV energies. We derive constraints on the sizes, internal properties, mass/volume-filling factors, and the number density any such structures would need to be both physically and observationally consistent. We consider a range of candidate structures, both large scale (e.g. H ii regions) and small scale (e.g. intermittent turbulent structures, perhaps even associated with radio plasma scattering) and show that while many macroscopic candidates can be immediately ruled out as the primary CR scattering sites, many smaller structures remain viable and merit further theoretical study. We discuss future observational constraints that could test these models. 
    more » « less