skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlinear Dynamics of Coupled Nickel Electrodissolution with Hydrogen Ion Reduction with Bipolar Electrodes
We investigate the emergence of current oscillations of a bipolar electrode (BPE) in coupled anode/cathode reaction under potentiostatic condition. In a traditional three-electrode setup, the nickel dissolution in sulfuric acid requires a minimum amount of IR ohmic drop, and thus series resistance for the oscillations to occur. In this paper, it is shown that in bipolar setup, when the nickel electrodissolution on the anodic side is coupled to hydrogen ion reduction on the cathodic side, spontaneous current oscillations can occur. An electrochemical analysis of the dynamics shows that the required circuit potential for the oscillations can be predicted from estimating the overpotentials needed for the anodic and cathodic reactions, the driving electrode, and the ohmic drop in the electrolyte. The dynamics and range of oscillations can be tuned by different concentrations of electrolyte, on both the anodic and the cathodic sides. In the considered example, the charge transfer resistance of the cathodic reaction can provide sufficient total resistance even when the solution resistance does not yield sufficient IR drop for the oscillations. Our findings have the potential to promote further studies of the collective behavior of electrochemical reactions using multielectrode arrays in bipolar electrode setups.  more » « less
Award ID(s):
1900011
PAR ID:
10557368
Author(s) / Creator(s):
;
Publisher / Repository:
ECS
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
170
Issue:
11
ISSN:
0013-4651
Page Range / eLocation ID:
113505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the dynamical behavior of the oscillatory electrodissolution of nickel and hydrogen reduction reaction in a closed electrochemical bipolar cell with two nickel wires. In the bipolar setup, two-half U cells are separated by an epoxy plate with the two embedded nickel electrodes; the oxidation and reduction reactions take place at the two ends of the same wire. The electrode potential oscillations were found to be strongly synchronized with 1 mm diameter electrodes in an in-phase configuration. Because experiments in similar configurations with traditional (three-electrode) cell showed no synchronization of the oscillatory anodic nickel electrodissolution, the introduction of the cathodic side of the bipolar electrodes induced the synchronization. The results were interpreted with a model that considered the kinetically coupled cathode-anode dynamics as well as interactions on the cathode and the anode side through migration current mediated potential drops in the electrolyte. The electrical coupling strength was calculated from solution resistance and charge transfer resistance measurements. The theory correctly interpreted that the bipolar cell with large (1 mm diameter) electrodes exhibits strong coupling with synchronization, and the bipolar cell with small (0.25 mm diameter) electrodes and the traditional configuration exhibit weak coupling and thus desynchronization. The experiments demonstrate the use of bipolar electrochemical cells for the investigation of collective behavior of electrochemical processes and the proposed approach holds promise for the design of bipolar multi-electrode arrays with engineered coupling to promote sensing and information processing using microchips. 
    more » « less
  2. Abstract Paired electrochemical reactions allow the optimization of both atom and energy economy of oxidation and reduction reactions. While many paired electrochemical reactions take advantage of perfectly matched reactions at the anode and cathode, this matching of substrates is not necessary. In constant current electrolysis, the potential at both electrodes adjusts to the substrates in solution. In principle, any oxidation reaction can be paired with any reduction reaction. Various oxidation reactions conducted on the anodic side of the electrolysis were paired with the generation and use of hydrogen gas at the cathode, showing the generality of the anodic process in a paired electrolysis and how the auxiliary reaction required for the oxidation could be used to generate a substrate for a non‐electrolysis reaction. This is combined with variations on the cathodic side of the electrolysis to complete the picture and illustrate how oxidation and reduction reactions can be combined. 
    more » « less
  3. The lithium-mediated nitrogen reduction reaction (LiNRR) produces ammonia in ambient conditions. This electrochemical pathway is dependent on a catalytic solid–electrolyte interphase—a nanoscale passivation layer formed from reductive electrolyte decomposition on the surface of lithium metal. The catalytic solid–electrolyte interphase is a unique nanostructured environment that exists on reactive metal surfaces and intimately influences product selectivity. Here we explore recent progress made in the field of lithium-mediated nitrogen reduction to ammonia, especially in light of growing knowledge about the nature of the catalytic solid–electrolyte interphase. We systematically analyse the observed chemical species and reactions that occur within the solid–electrolyte interphase. We also summarize key developments in kinetic and transport models, as well as highlight the cathodic and complementary anodic reactions. Trends in ammonia selectivities and rates with varying electrolyte compositions, cell designs and operating conditions are extracted and used to articulate a path forward for continued development of lithium-mediated nitrogen reduction to ammonia. 
    more » « less
  4. This paper is concerned with long-distance interactions between an unbiased metal nanoparticle (NP) and a nanoelectrode employed as a tip in the scanning electrochemical microscope (SECM). A NP immobilized on the inert substrate acts as a bipolar electrode, producing positive SECM feedback. The tip current magnitude depends strongly on the ratio of the particle and tip radii and the heterogeneous charge-transfer kinetics. The onset of electron tunneling was observed at very short separation distances (<2–3 nm) at which the NP behaves as a part of the tip electrode. The rate constant of the electron-transfer (ET) or electrocatalytic reaction at the NP can be extracted from either feedback or tunneling current. The tunneling mode of SECM can be used to investigate heterogeneous reactions occurring at a single NP without making an ohmic contact with it. This technique can also help elucidate nanoparticle/electrode interactions in various electrochemical systems ranging from NPs immobilized on the electrode surface to nanoimpact collision events. 
    more » « less
  5. Electric double layers form at electrode-electrolyte interfaces and often play defining roles in governing electrochemical reaction rates and selectivity. While double layer formation has remained an active area of research for more than a century, most frameworks used to predict electric double layer properties, such as local ion concentrations, potential gradients, and reactant chemical potentials, remain rooted in classical Gouy-Chapman-Stern theory, which neglects ion-ion interactions and assumes non-reactive interfaces. Yet, recent findings from the surface forces and electrocatalysis communities have highlighted how the emergence of ion-ion interactions fundamentally alters electric double layer formation mechanisms and interface properties. Notably, recent studies with ionic liquids show that ionic correlations and clustering can substantially alter reaction rates and selectivity, especially in concentrated electrolytes. Further, emerging studies suggest that electric double layer structures and dynamics significantly change at potentials where electrocatalytic reactions occur. Here, we provide our perspective on how ion-ion interactions can impact electric double layer properties and contribute to modulating electrocatalytic systems, especially under conditions where high ion concentrations and large applied potentials cause deviations from classical electrolyte theory. We also summarize growing questions and opportunities to further explore how electrochemical reactions can drastically alter electric double layer properties. We conclude with a perspective on how these findings open the door to using electrocatalytic reactions to study electric double layer formation and achieve electrochemical conversion by engineering electrode-electrolyte interfaces. 
    more » « less