skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct-write 3D printing of plasmonic nanohelicoids by circularly polarized light
Chiral plasmonic surfaces with 3D “forests” from nanohelicoids should provide strong optical rotation due to alignment of helical axis with propagation vector of photons. However, such three-dimensional nanostructures also demand multi-step nanofabrication, which is incompatible with many substrates. Large-scale photonic patterns on polymeric and flexible substrates remain unattainable. Here, we demonstrate the substrate-tolerant direct-write printing and patterning of silver nanohelicoids with out-of-plane 3D orientation using circularly polarized light. Centimeter-scale chiral plasmonic surfaces can be produced within minutes using inexpensive medium-power lasers. The growth of nanohelicoids is driven by the symmetry-broken site-selective deposition and self-assembly of the silver nanoparticles (NPs). The ellipticity and wavelength of the incident photons control the local handedness and size of the printed nanohelicoids, which enables on-the-fly modulation of nanohelicoid chirality during direct writing and simple pathways to complex multifunctional metasurfaces. Processing simplicity, high polarization rotation, and fine spatial resolution of the light-driven printing of stand-up helicoids provide a rapid pathway to chiral plasmonic surfaces, accelerating the development of chiral photonics for health and information technologies.  more » « less
Award ID(s):
1807676
PAR ID:
10557765
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
11
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Designing broadband enhanced chirality is of strong interest to the emerging fields of chiral chemistry and sensing, or to control the spin orbital momentum of photons in recently introduced nanophotonic chiral quantum and classical optical applications. However, chiral light‐matter interactions have an extremely weak nature, are difficult to control and enhance, and cannot be made tunable or broadband. In addition, planar ultrathin nanophotonic structures to achieve strong, broadband, and tunable chirality at the technologically important visible to ultraviolet spectrum still remain elusive. Here, these important problems are tackled by experimentally demonstrating and theoretically verifying spectrally tunable, extremely large, and broadband chiroptical response by nanohelical metamaterials. The reported new designs of all‐dielectric and dielectric‐metallic (hybrid) plasmonic metamaterials permit the largest and broadest ever measured chiral Kuhn's dissymmetry factor achieved by a large‐scale nanophotonic structure. In addition, the strong circular dichroism of the presented bottom‐up fabricated optical metamaterials can be tuned by varying their dimensions and proportions between their dielectric and plasmonic helical subsections. The currently demonstrated ultrathin optical metamaterials are expected to provide a substantial boost to the developing field of chiroptics leading to significantly enhanced and broadband chiral light‐matter interactions at the nanoscale. 
    more » « less
  2. Abstract Plasmonic metal nanostructures can simultaneously scatter and absorb light, with resonance wavelength and strength depending on their morphology and composition. This work demonstrates that unique dichroic effects and high‐contrast colour‐switching can be achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. Using core/shell nanostructures comprising a metal core and a dielectric shell, we show that their spray coating on reflective substrates produces dichroic films that can display colour switching at different viewing angles. The high‐contrast colour switching, high flexibility in designing multicolour patterns, and convenience for large‐scale production promise their wide range of applications, including anticounterfeiting, mechanochromic sensing, colour display, and printing. 
    more » « less
  3. Abstract Nanostructured silver stands out among other plasmonic materials because its optical losses are the lowest of all metals. However, nanostructured silver rapidly degrades under ambient conditions, preventing its direct use in most plasmonic applications. Here, a facile and robust method for the preparation of highly stable nanostructured silver morphologies is introduced. 3D nanostructured gyroid networks are fabricated through electrodeposition into voided, self‐assembled triblock terpolymer scaffolds. Exposure to an argon plasma degraded the polymer and stabilized the silver nanostructure for many weeks, even in high humidity and under high‐dose UV irradiation. This stabilization protocol enables the robust manufacture of low‐loss silver nanostructures for a wide range of plasmonic applications. 
    more » « less
  4. DNA nanotechnology leverages the molecular design resolution of the DNA double helix to fold and tile matter into designer architectures. Recent advances in bioinorganic chemistry have exploited the affinity of soft nucleobase functional groups for silver ions in order to template the growth of silver nanoclusters by templated reduction. The coupling of the spatial resolution of DNA nanotechnology and the atomic precision of DNA-based nanocluster synthesis has not been realized. Here we develop a method using 3D DNA crystals to employ silver-ion-mediated base pairs as nucleation sites for atomically-precise nanocluster growth. By leveraging the topology of DNA tensegrity triangles, we provide a mesoporous 3D lattice that is robust to reducing conditions, enabling precise spatial templating. Use of in situ confocal fluorescence microscopy allows for the direct observation of reaction kinetics and reconstruction of the optical bandgap. Control over reaction time and stoichiometry, base pair identity, and buffer composition enable precise tuning of the atomic composition and optical properties of the ensuing nanoclusters. The resulting crystals are of diffraction quality, yielding molecular structures of Ag4 and Ag6 in 3D. Inter-cluster distances of less than 2 nm show strong plasmonic coupling, with red shifting observed relative to literature standards. We anticipate that these results will yield advances in materials synthesis, DNA-based plasmonic crystals, and optically-active nanoelectronics. 
    more » « less
  5. Abstract Plasmonic nanosystems and metamaterials have recently attracted considerable attention because of their ability to enhance the light–matter interactions. One of such optical phenomena is the chiral‐ or handedness‐dependent response which typically requires 3D samples. Planar structures that can exhibit chiral response are highly desirable because of their facile fabrication, however fundamental challenges arising from the 2D nature of these systems prevent the generation of strong chiro‐optical effects. In this work, giant enhancement of the handedness‐dependent optical response in planar metallic nanostructures is shown by exploring the hybridization of plasmonic–photonic modes in a chiral metasurface. The resulting planar hybrid metasurface exhibits over an order of magnitude difference in nonlinear optical response when illuminated with excitation light of opposite circular polarizations. The unique properties of the hybridized plasmonic–photonic modes are shown to be responsible for the giant chiral nonlinear response. This platform allows to study the fundamental framework of chiral optical effects that arise from the combination of planar chirality and collective interaction of discrete nanosystems. 
    more » « less