skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: A Statistical Survey of E‐Region Anomalous Electron Heating Using Poker Flat Incoherent Scatter Radar Observations
Abstract This work presents an algorithm for automatic detection of anomalous electron heating (AEH) events in the auroral E‐region ionosphere using data from the Poker Flat Incoherent Scatter Radar (PFISR). The algorithm considers both E‐region electron temperature and magnetically conjugate electric field measurements. Application of this algorithm to 14 years of PFISR data spanning 2010 through 2023 detected 505 AEH events. Measured electron temperatures increase linearly with plasma drift speeds. Statistical trends of AEH occurrence as a function of space weather indices (AE and F10.7) demonstrate correlations with the solar cycle and geomagnetic activity levels. The magnetic local time occurrence rates show preferences for dusk and dawn with most events in the dusk sector. Observed AEH events tend to appear in regions of relatively low electron density and do not appear inside intense auroral arcs with high electron density. Furthermore, AEH detection requires a higher electric field than predicted by the threshold for a positive growth rate of the Farley‐Buneman instability (FBI), according to linear fluid theory. The implications of these findings for kinetic theories of FBI and AEH are discussed.  more » « less
Award ID(s):
1936186
PAR ID:
10557931
Author(s) / Creator(s):
;
Publisher / Repository:
John Wiley & Sons, Inc.
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
129
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigates the distribution and formation mechanisms of ionization troughs inside an auroral oval (referred to as high‐latitude troughs) by analyzing Swarm observations from May–August 2014. Simultaneous measurements of plasma density, 3‐dimensional ion velocity, ionospheric radial current (IRC), and electron temperature are available during this period. Because high‐latitude troughs appear within an auroral oval while mid‐latitude troughs appear at the equatorward edge of the auroral oval, the positioning of troughs relative to the equatorward auroral boundary becomes critical for distinguishing between the two types of troughs. We ascertain the auroral boundary and the orientation of field‐aligned currents using IRC data derived from magnetic field measurements. The principal features of high‐latitude troughs identified from Swarm data include: (a) enhancements in ion velocity and electron temperature, (b) the presence of downward or absent field‐aligned current (FAC), and (c) a more frequent occurrence in the Northern (summer) Hemisphere than in the Southern (winter) Hemisphere and in the dawn and dusk sectors than in the noon and midnight sectors. The alignment of the density minimum with the velocity maximum underscores the role of high‐speed plasma convection in the formation of high‐latitude troughs; atmospheric frictional heating promotes the O+loss through dissociative recombination. The prevailing appearance of high‐latitude troughs at dawn and dusk sectors, coupled with downward field‐aligned currents, indicates the involvement of outward electron evacuation in trough formation. 
    more » « less
  2. Abstract Since the 1950s, high frequency and very high frequency radars near the magnetic equator have frequently detected strong echoes caused ultimately by the Farley‐Buneman instability (FBI) and the gradient drift instability (GDI). In the 1980s, coordinated rocket and radar campaigns made the astonishing observation of flat‐topped electric fields coincident with both meter‐scale irregularities and the passage of kilometer‐scale waves. The GDI in the daytimeEregion produces kilometer‐scale primary waves with polarization electric fields large enough to drive meter‐scale secondary FBI waves. The meter‐scale waves propagate nearly vertically along the large‐scale troughs and crests and act as VHF tracers for the large‐scale dynamics. This work presents a set of hybrid numerical simulations of secondary FBIs, driven by a primary kilometer‐scale GDI‐like wave. Meter‐scale density irregularities develop in the crest and trough of the kilometer‐scale wave, where the total electric field exceeds the FBI threshold, and propagate at an angle near the direction of total Hall drift determined by the combined electric fields. The meter‐scale irregularities transport plasma across the magnetic field, producing flat‐topped electric fields similar to those observed in rocket data and reducing the large‐scale wave electric field to just above the FBI threshold value. The self‐consistent reduction in driving electric field helps explain why echoes from the FBI propagate near the plasma acoustic speed. 
    more » « less
  3. Abstract Low‐altitude observations of magnetospheric particles provide a unique opportunity for remote probing of the magnetospheric and plasma states during active times. We present the first statistical analysis of a specific pattern in such observations, energetic electron flux dropouts in the low‐altitude projection of the plasma sheet. Using 3.5 years of data from the ELFIN CubeSats we report the occurrence distribution of 145 energetic electron flux dropout events and identify characteristics, including their prevalence in the dusk and premidnight sectors, their association with substorms and enhanced auroral activities, and their correlation with the region‐1 (R1) field‐aligned current region. We also investigate three representative dropout events which benefit from satellite conjunctions between ELFIN, GOES, and THEMIS, to better understand the magnetospheric drivers and magnetic field conditions that lead to such dropouts as viewed by ELFIN. One class of dropouts may be associated with magnetic field mapping distortions due to local enhancements and thinning of cross‐tail current sheets and amplification of R1 field‐aligned currents. The other class may be associated with the increase in perpendicular anisotropy of magnetospheric electrons due to magnetic field dipolarizations near premidnight. These plasma sheet flux dropouts at ELFIN provide a valuable tool for refining magnetospheric models, thereby improving the accuracy of field‐line mapping during substorms. 
    more » « less
  4. Abstract This paper surveys six years of Global Positioning System (GPS) L1 and L2C ionospheric scintillation in the auroral zone and, with a collocated incoherent scatter radar, hypothesizes the ionospheric irregularity layer. The Scintillation Auroral GPS Array of six scintillation receivers is sited at Poker Flat Research Range, Alaska, as is the Poker Flat incoherent scatter radar (PFISR). Scintillation intervals are identified across at least four receivers of the array using S4 and sigma phi (σϕ) indices at 100 s cadence. Classification as “amplitude,” “phase,” or “both‐phase‐and‐amplitude” scintillation is performed by analyzing common time intervals of elevated S4 andσϕ. Scattering of Global Navigation Satellite System (GNSS) waves by refractive or diffractive effects is hypothesized to occur in the E or F layer, or a transition layer in between, based on the PFISR peak density altitude at the time of the scintillation event. We analyze the statistics of the irregularity layer from 2014 to 2019, spanning solar maximum to solar minimum. We find fewer scintillation events per day with the waning solar cycle, nearly all of them phase scintillations. We also find that the percentage of events hypothesized to be caused by irregularities in the E layer increases with the declining solar cycle. The local time dependence of phase scintillations is primarily at night and in the E layer. Phase scintillation events occurring during daytime occur at solar maximum and are nearly all in the F layer. The majority of the events containing amplitude scintillations are daytime F layer at solar maximum (2014). 
    more » « less
  5. Abstract Competing theories exist for the generation mechanism of auroral medium‐frequency burst (MFB). In an effort to constrain MFB source heights, this study analyzes 33 events in which MFB and auroral 2fceroar co‐occurred at Sondrestrom, Greenland. Using measurements from an array of receiving antennas, direction‐of‐arrival calculations indicate that in a given co‐occurrence, the elevation angle of MFB typically is higher than that of roar. Ray tracing is used to determine source heights of the MFB signals. Density profiles are obtained from the International Reference Ionosphere (IRI) and shifted in magnitude until each event's roar signals originate at heights where the frequency‐matching condition for 2fceroar generation is satisfied. This shifting method is validated using density measurements from the Sondrestrom incoherent scatter radar (ISR) facility for the two events with available ISR data. After shifting, ray tracing demonstrates that in 25 of the 33 events, burst originates at a height of about 200 km, lower than the typical altitude of peak electron density. However, ISR measurements show that the density profile is enhanced at low altitudes while MFB is observed, peaking in theEregion rather than theFregion. This finding implies that the MFB sources at 200 km are on the topside of the density peak, in a region of downward pointing density gradient, in qualitative agreement with the mechanism of MFB generation by Langmuir waves in the topside ionosphere. These results also suggest a new method of estimating density in the polar cap using roar signals to calibrate IRI profiles. 
    more » « less