skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rotational state-to-state transition rate coefficients for H 2 O + H 2 O collisions at nonequilibrium conditions
Aims.The goal is to develop a database of rate coefficients for rotational state-to-state transitions in H2O + H2O collisions that is suitable for the modeling of energy transfer in nonequilibrium conditions, in which the distribution of rotational states of H2O deviates from local thermodynamic equilibrium. Methods.A two-temperature model was employed that assumed that although there is no equilibrium between all possible degrees of freedom in the system, the translational and rotational degrees of freedom can be expected to achieve their own equilibria independently, and that they can be approximately characterized by Boltzmann distributions at two different temperatures,TkinandTrot. Results.Upon introducing our new parameterization of the collisional rates, taking into account their dependence on bothTkinandTrot, we find a change of up to 20% in the H2O rotational level populations for both ortho and para-H2O for the part of the cometary coma where the nonequilibrium regime occurs.  more » « less
Award ID(s):
2009253
PAR ID:
10558074
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MNRAS
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
688
ISSN:
0004-6361
Page Range / eLocation ID:
A208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. First measurements of internal quantum-state distributions for nitric oxide (NO) evaporating from liquid benzyl alcohol are presented over a broad range of temperatures, performed by liquid-microjet techniques in an essentially collision-free regime, with rotational/spin–orbit populations in the 2 Π 1/2,3/2 manifolds measured by laser-induced fluorescence. The observed rotational distributions exhibit highly linear (i.e., thermal) Boltzmann plots but notably reflect rotational temperatures ( T rot ) as much as 30 K lower than the liquid temperature ( T jet ). A comparable lack of equilibrium behavior is also noted in the electronic degrees of freedom but with populations corresponding to spin–orbit temperatures ( T SO ) consistently higher than T rot by ∼15 K. These results unambiguously demonstrate evaporation into a non-equilibrium distribution, which, by detailed-balance considerations, predict quantum-state-dependent sticking coefficients for incident collisions of NO at the gas–liquid interface. Comparison and parallels with previous experimental studies of NO thermal desorption and molecular-beam scattering in other systems are discussed, which suggests the emergence of a self-consistent picture for the non-equilibrium dynamics. 
    more » « less
  2. In our experiment, a trace amount of an organic molecule (M = 1H-phenalen-1-one, 9-fluorenone, pyridine, or acridine) was seeded into a gas mix consisting of 3% O2 with a rare gas buffer (He or Ar) and then supersonically expanded. We excited the resulting molecular beam with ultraviolet light at either 355 nm (1H-phenalen-1-one, 9-fluorenone, or acridine) or 266 nm (pyridine) and used resonance enhanced multiphoton ionization (REMPI) spectroscopy to probe for formation of O2 in the a 1Δg state, 1O2. For all systems, the REMPI spectra demonstrates that ultraviolet excitation results in formation of 1O2 and the oxygen product is confirmed to be in the ground vibrational state and with an effective rotational temperature below 80 K. We then recorded the velocity map ion image of the 1O2 product. From the ion images we determined the center-of-mass translational energy distribution, P(ET), assuming photodissociation of a bimolecular M-O2 complex. We also report results from electronic structure calculations that allow for a determination of the M-O2 ground state binding energy. We use the complex binding energy, the energy to form 1O2, and the adiabatic triplet energy for each organic molecule to determine the available energy following photodissociation. For dissociation of a bimolecular complex, this available energy may be partitioned into either center-of-mass recoil or internal degrees of freedom of the organic moiety. We use the available energy to generate a Prior distribution, which predicts statistical energy partitioning during dissociation. For low available energies, less than 0.2 eV, we find the statistical prediction is in reasonable agreement with the experimental observations. However, at higher available energies the experimental distribution is biased to lower center-of-mass kinetic energies compared with the statistical prediction, which suggests the complex undergoes vibrational predissociation. 
    more » « less
  3. Aims. We present new calculations of collision cross sections for state-to-state transitions between the rotational states in an H 2 O + H 2 O system, which are used to generate a new database of collisional rate coefficients for cometary and planetary applications. Methods. Calculations were carried out using a mixed quantum-classical theory approach that is implemented in the code MQCT. The large basis set of rotational states used in these calculations permits us to predict thermally averaged cross sections for 441 transitions in para- and ortho-H 2 O in a broad range of temperatures. Results. It is found that all state-to-state transitions in the H 2 O + H 2 O system split into two well-defined groups, one with higher cross-section values and lower energy transfer, which corresponds to the dipole-dipole driven processes. The other group has smaller cross sections and higher energy transfer, driven by higher-order interaction terms. We present a detailed analysis of the theoretical error bars, and we symmetrized the state-to-state transition matrixes to ensure that excitation and quenching processes for each transition satisfy the principle of microscopic reversibility. We also compare our results with other data available from the literature for H 2 O + H 2 O collisions. 
    more » « less
  4. Abstract A highly water‐ and air‐stable Fe(II) complex with the quinol‐containing macrocyclic ligand H4qp4 reacts with H2O2to yield Fe(III) complexes with less highly chelating forms of the ligand that have either one or twopara‐quinones. The reaction increases theT1‐weighted relaxivity over four‐fold, enabling the complex to detect H2O2using clinical MRI technology. The iron‐containing sensor differs from its recently characterized manganese analog, which also detects H2O2, in that it is the oxidation of the metal center, rather than the ligand, that primarily enhances the relaxivity. 
    more » « less
  5. We study the 3.4 − 4.4 μm fundamental rovibrational band of H3+, a key tracer of the ionization of the molecular interstellar medium (ISM), in a sample of 12 local (d < 400 Mpc) (ultra)luminous infrared galaxies ((U)LIRGs) observed with JWST/NIRSpec. TheP,Q, andRbranches of the band are detected in 13 out of 20 analyzed regions within these (U)LIRGs, which increases the number of extragalactic H3+detections by a factor of 6. For the first time in the ISM, the H3+band is observed in emission; we detect this emission in three regions. In the remaining ten regions, the band is seen in absorption. The absorptions are produced toward the 3.4 − 4.4 μm hot dust continuum rather than toward the stellar continuum, indicating that they likely originate in clouds associated with the dust continuum source. The H3+band is undetected in Seyfert-like (U)LIRGs where the mildly obscured X-ray radiation from the active galactic nuclei might limit the abundance of this molecule. For the detections, the H3+abundances,N(H3+)/NH = (0.5 − 5.5)×10−7, imply relatively high ionization rates,ζH2, of between 3 × 10−16and > 4 × 10−15s−1, which are likely associated with high-energy cosmic rays. In half of the targets, the absorptions are blueshifted by 50–180 km s−1, which is lower than the molecular outflow velocities measured using other tracers such as OH 119 μm or rotational CO lines. This suggests that H3+traces gas close to the outflow-launching sites before it has been fully accelerated. We used nonlocal thermodynamic equilibrium models to investigate the physical conditions of these clouds. In seven out of ten objects, the H3+excitation is consistent with inelastic collisions with H2in warm translucent molecular clouds (Tkin ∼ 250–500 K andn(H2) ∼102 − 3cm−3). In three objects, dominant infrared pumping excitation is required to explain the absorptions from the (3,0) and (2,1) levels of H3+detected for the first time in the ISM. 
    more » « less