skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Composite PEDOT:PSS‐PEO Layers for Improving Lithium Batteries**
Abstract This work investigates the application of poly(3,4‐ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) with polyethylene oxide (PEO) in lithium batteries (LIBs). This composite film comprising PEDOT:PSS and PEO was 3D printed onto a carbon nanofiber (CNF) substrate to serve as a layer between the polypropylene (PP) separator and the lithium anode in LIBs. The resulting CNF‐PEDOT:PSS‐PEO film exhibited superior mechanical and thermal properties compared to conventional PP separators. Mechanical tests revealed a high Young's modulus and puncture strength for the composite film. Thermal stability tests indicated that the CNF‐PEDOT:PSS‐PEO film remained stable at higher temperatures compared to the commercial PP separator, and combustion tests confirmed its superior fire‐resistance properties. In terms of conductivity, the composite film maintained comparable ionic conductivity to the commercial PP separator. Electrochemical tests demonstrated that LIBs incorporating the CNF‐PEDOT:PSS‐PEO film exhibited slight improvement in cycling performance, with a 7.9 % increase in long‐term cycling capacity compared to LIBs using only the commercial PP separator. These findings indicate that the developed CNF‐PEDOT:PSS‐PEO composite film holds promise to improve safety, while maintaining the electrochemical performance of LIBs by reducing dendrite formation and enhancing thermal stability.  more » « less
Award ID(s):
2313395 2224749
PAR ID:
10558142
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemElectroChem
Volume:
11
Issue:
20
ISSN:
2196-0216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrode architectures significantly influence the electrochemical performance, flexibility, and applications of lithium‐ion batteries (LiBs). However, the conventional bar coating for fabricating electrodes limits the addition of customized architecture or patterns. In this study, as a novel approach, patterns are integrated into electrodes through large‐scale roll‐to‐roll (R2R) flexographic printing. Additionally, flexible, recyclable, and biodegradable paper are innovatively used as a printing substrate during printing LiBs manufacturing, which exhibited superior printability. Moreover, the paper is modified with a thin‐layer Al2O3to function as the separator in the printed LiB. The Al2O3‐coated paper enables an admirable wettability for printing, excellent mechanical properties for high‐speed R2R manufacturing, and outstanding thermal stability for the safe and stable operation of LiBs. The assembled paper cells exhibit nearly 100% discharge capacity retention after 1000 cycles at 3 C and outstanding rate performance. This work inspires future large‐scale microbatteries manufacturing integrated with high‐resolution architecture designs. 
    more » « less
  2. The development of high-performance battery technologies necessitates ultrathin separators with superior mechanical strength and electrochemical properties. We present an innovative 1 µm thick, pinhole-free zeolitic imidazolate framework-8 (ZIF-8) layer, cathodically deposited on an 8 µm thick commercial polypropylene (PP) film in a rapid process, resulting in a ZIF-8@8-µm PP flexible membrane. This crack-free ZIF-8 layer, featuring angstrom-scale pores and chemical polar groups, functions as a Li+ sieve, regulating Li+ transport, controlling Li deposition, and blocking dissolved active cathode materials. It also enhances Li+ diffusion and transference number, extending the Sand’s time for Li dendrite formation. Consequently, the ZIF-8@8-µm PP separator addresses polysulfide shuttling in Li-S batteries and Li dendrite formation in Li-metal batteries, significantly improving their performance compared to conventional separators. Our findings indicate that while the 8-μm PP alone is unsuitable as a battery separator, the ZIF-8@8-μm PP, possesses the mechanical strength and electrochemical properties necessary for developing both Li-S and Li-metal batteries, as well as application in conventional Li-ion batteries with enhanced volumetric energy densities. 
    more » « less
  3. Electrospray deposition (ESD) is employed to produce separator membranes for coin-cell lithium-ion batteries (LIBs) using off-the-shelf polyimide (PI). The PI coatings are deposited directly onto planar LiNi0.6Mn0.2Co0.2O2 (NMC) electrodes via self-limiting electrospray deposition (SLED). Scanning electron microscopy (SEM), optical microscopy, and spectroscopic microreflectometry are implemented in combination to evaluate the porosity, thickness, and morphology of sprayed PI films. Furthermore, ultraviolet-visual wavelength spectroscopy (UV vis) is utilized to qualitatively assess variation in film porosity within a temperature range of 20-400oC, to determine the stable temperature range of the separator. UV vis results underscore the ability of the SLED PI separator to maintain its porous microstructure up to ~350oC. Electrochemical performance of the PI separators is analyzed via charge/discharge cycle rate tests. Discharge capacities of the SLED PI separators are within 83-99.8% of commercial Celgard 2325 PP/PE/PP separators. This study points to the unique possibility of SLED as a separator manufacturing technique for geometrically complex energy storage systems. Further research is needed to optimize the polymer-solvent system to enhance control of porosity, pore size, and coating thickness. This can lead to significant improvement in rate and cycle life performance in more advanced energy storage devices. 
    more » « less
  4. Polyethylene oxide (PEO)-based solid composite electrolytes (SCEs), with inorganic fillers, are studied extensively due to their effective balance between mechanical and electrochemical properties. The correlation between the composition of SCEs and their electrochemical behavior has been studied extensively, primarily focusing on the type of polymer matrix with a bias towards high lithium (Li) salt. In this study, we examine the changes in the properties of SCEs at two low EO : Li ratios, 43:1 and 18:1, in the PEO-LiTFSI matrix (with and without 10 wt% of 5 μm LLZTO) and evaluate their impact on Li stripping and plating reactions. Although higher salt concentration (18:1) results in substantially higher ionic conductivity (by approximately an order of magnitude), interestingly we observe that lower salt concentration (43:1) exhibits up to 3 times longer Li cycling life. Notably, electrolytes with low salt concentration (43:1) are much stiffer, with compressive modulus more than twice as high as the 18:1 counterpart. Although the ionic conductivity of the electrolyte is often the most immediate concern in the electrolyte design process, these findings accentuate the equal importance of mechanical properties in order to ensure successful electrolyte performance throughout prolonged Li cycling. 
    more » « less
  5. Herein, we report the production of ionic polymer-metal composites (IPMCs) hybridized with cellulose nanofibrils (CNF) as a partial substitute for Nafion®. The aim is not only to reduce the production cost and enhance respective mechanical/thermal properties but also to bestow a considerable degree of biodegradability to such products. Formulations with di erent CNF/Nafion® ratios were produced in a thin-film casting process. Crack-free films were air-dried and plated by platinum (Pt) through an oxidation-reduction reaction. The produced hybrids were analyzed in terms of thermal stability, mechanical and morphological aspects to examine their performance compared to the Nafion-based IPMC prior to plating process. Results indicated that films with higher CNF loadings had improved tensile strengths and elastic moduli but reduced ductility. Thermogravimetric analysis (TGA) showed that the incorporation of CNF to the matrix reduced its thermal stability almost linearly, however, the onset of decomposition point remained above 120 C, which was far above the temperature the composite membrane is expected to be exposed to. The addition of a cross-linking agent to the formulations helped with maintaining the integrity of the membranes during the plating process, thereby improving surface conductivity. The focus of the current study was on the physical and morphological properties of the films, and the presented data advocate the potential utilization of CNF as a nontoxic and sustainable bio-polymer for blending with perfluorosulfonic acid-based co-polymers, such as Nafion®, to be used in electroactive membranes. 
    more » « less