skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating the Mitigating Effects of Social Distancing and Vaccination during a Pandemic​
Understanding the spread of a virus through a large population has always been important for mitigation, treatment, and prevention purposes. In the unprecedented wake of the COVID-19 (SARS-CoV-2) pandemic, techniques to understand and test preventative measures—like vaccination and quarantining—have become increasingly necessary. The developed compartmental model simulates the interactions between (N) people, with variable infection rates for vaccinated (alpha = 0.05) and unvaccinated (Beta = 0.25) people, as well as a (t = 15) day recovery from infection. Both the range of their infectivity, controlled by the quarantine variable (q), and the vaccination rate (f) of the population were varied. The main tests were on the variables of vaccine distribution and effectiveness, as well as quarantine range and the combination between the two. The results suggest that vaccination has a negative linear effect on infection cases over the course of the simulation, while quarantine has a minimal effect until higher amounts (over 80% quarantine), with the inverse being true for duration (increasing with stricter measures). Vaccination and quarantining also have a negative linear and exponential effect respectively on peak case count, which would be helpful in managing the patient flow into hospitals. Reproduction number was also found to be limited below 1.0 by vaccination measures, bringing the outbreak to an end. From these findings, it would be reasonable to suggest that vaccination is nearly ubiquitously helpful, while much stricter quarantine restrictions must be put in place for substantial effect, with the goal to flatten peak cases and decrease reproduction number.  more » « less
Award ID(s):
1603806
PAR ID:
10558268
Author(s) / Creator(s):
; ;
Publisher / Repository:
rScroll Publications
Date Published:
Journal Name:
Journal of Student Research
Volume:
11
Issue:
1
ISSN:
2167-1907
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emergence of multiple strains of SARS-COV-2 has made it complicated to predict and control the COVID-19 pandemic. Although some vaccines have been effective in reducing the severity of the disease, these vaccines are designed for a specific strain of the virus and are usually less effective for other strains. In addition, the waning of vaccine-induced immunity, reinfection of recovered people, and incomplete vaccination are challenging to the vaccination program. In this study, we developed a detailed model to describe the multi-strain transmission dynamics of COVID-19 under vaccination. We implemented our model to examine the impact of inter-strain transmission competition under vaccination on the critical outbreak indicators: hospitalized cases, undiagnosed cases, basic reproduction numbers, and the overtake-time by a new strain to the existing strain. In particular, our results on the dependence of the overtake-time on vaccination rates, progression-to-infectious rate, and relative transmission rates provide helpful information for managing a pandemic with circulating two strains. Furthermore, our results suggest that a reduction in the relative transmission rates and a decrease in vaccination dropout rates or an increase in vaccination rates help keep the reproduction number of both strains below unity and keep the number of hospitalized cases and undiagnosed cases at their lowest levels. Moreover, our analysis shows that the second and booster-dose vaccinations are useful for further reducing the reproduction number. 
    more » « less
  2. Each state in the USA exhibited a unique response to the COVID-19 outbreak, along with variable levels of testing, leading to different actual case burdens in the country. In this study, via per capita testing dependent ascertainment rates, along with case and death data, we fit a minimal epidemic model for each state. We estimate infection-level responsive lockdown/self-quarantine entry and exit rates (representing government and behavioural reaction), along with the true number of cases as of 31 May 2020. Ultimately, we provide error-corrected estimates for commonly used metrics such as infection fatality ratio and overall case ascertainment for all 55 states and territories considered, along with the USA in aggregate, in order to correlate outbreak severity with first wave intervention attributes and suggest potential management strategies for future outbreaks. We observe a theoretically predicted inverse proportionality relation between outbreak size and lockdown rate, with scale dependent on the underlying reproduction number and simulations suggesting a critical population quarantine ‘half-life’ of 30 days independent of other model parameters. 
    more » « less
  3. Regional quarantine policies, in which a portion of a population surrounding infections is locked down, are an important tool to contain disease. However, jurisdictional governments—such as cities, counties, states, and countries—act with minimal coordination across borders. We show that a regional quarantine policy’s effectiveness depends on whether 1) the network of interactions satisfies a growth balance condition, 2) infections have a short delay in detection, and 3) the government has control over and knowledge of the necessary parts of the network (no leakage of behaviors). As these conditions generally fail to be satisfied, especially when interactions cross borders, we show that substantial improvements are possible if governments are outward looking and proactive: triggering quarantines in reaction to neighbors’ infection rates, in some cases even before infections are detected internally. We also show that even a few lax governments—those that wait for nontrivial internal infection rates before quarantining—impose substantial costs on the whole system. Our results illustrate the importance of understanding contagion across policy borders and offer a starting point in designing proactive policies for decentralized jurisdictions. 
    more » « less
  4. Abstract Currently, several western countries have more than half of their population fully vaccinated against COVID-19. At the same time, some of them are experiencing a fourth or even a fifth wave of cases, most of them concentrated in sectors of the populations whose vaccination coverage is lower than the average. So, the initial scenario of vaccine prioritization has given way to a new one where achieving herd immunity is the primary concern. Using an age-structured vaccination model with waning immunity, we show that, under a limited supply of vaccines, a vaccination strategy based on minimizing the basic reproduction number allows for the deployment of a number of vaccine doses lower than the one required for maximizing the vaccination coverage. Such minimization is achieved by giving greater protection to those age groups that, for a given social contact pattern, have smaller fractions of susceptible individuals at the endemic equilibrium without vaccination, that is, to those groups that are more vulnerable to infection. 
    more » « less
  5. The large population movement during the Spring Festival travel in China can considerably accelerate the spread of epidemics, especially after the relaxation of strict control measures against COVID-19. This study aims to assess the impact of population migration in Spring Festival holiday on epidemic spread under different scenarios. Using inter-city population movement data, we construct the population flow network during the non-holiday time as well as the Spring Festival holiday. We build a large-scale metapopulation model to simulate the epidemic spread among 371 Chinese cities. We analyze the impact of Spring Festival travel on the peak timing and peak magnitude nationally and in each city. Assuming an R0 (basic reproduction number) of 15 and the initial conditions as the reported COVID-19 infections on 17 December 2022, model simulations indicate that the Spring Festival travel can substantially increase the national peak magnitude of infection. The infection peaks arrive at most cities 1–4 days earlier as compared to those of the non-holiday time. While peak infections in certain large cities, such as Beijing and Shanghai, are decreased due to the massive migration of people to smaller cities during the pre-Spring Festival period, peak infections increase significantly in small- or medium-sized cities. For a less transmissible disease (R0 = 5), infection peaks in large cities are delayed until after the Spring Festival. Small- or medium-sized cities may experience a larger infection due to the large-scale population migration from metropolitan areas. The increased disease burden may impose considerable strain on the healthcare systems in these resource-limited areas. For a less transmissible disease, particular attention needs to be paid to outbreaks in large cities when people resume work after holidays. 
    more » « less