Spatial transcriptomic technologies and spatially annotated single-cell RNA sequencing datasets provide unprecedented opportunities to dissect cell–cell communication (CCC). However, incorporation of the spatial information and complex biochemical processes required in the reconstruction of CCC remains a major challenge. Here, we present COMMOT (COMMunication analysis by Optimal Transport) to infer CCC in spatial transcriptomics, which accounts for the competition between different ligand and receptor species as well as spatial distances between cells. A collective optimal transport method is developed to handle complex molecular interactions and spatial constraints. Furthermore, we introduce downstream analysis tools to infer spatial signaling directionality and genes regulated by signaling using machine learning models. We apply COMMOT to simulation data and eight spatial datasets acquired with five different technologies to show its effectiveness and robustness in identifying spatial CCC in data with varying spatial resolutions and gene coverages. Finally, COMMOT identifies new CCCs during skin morphogenesis in a case study of human epidermal development. 
                        more » 
                        « less   
                    
                            
                            Detecting global and local hierarchical structures in cell-cell communication using CrossChat
                        
                    
    
            Abstract Cell-cell communication (CCC) occurs across different biological scales, ranging from interactions between large groups of cells to interactions between individual cells, forming a hierarchical structure. Globally, CCC may exist between clusters or only subgroups of a cluster with varying size, while locally, a group of cells as sender or receiver may exhibit distinct signaling properties. Current existing methods infer CCC from single-cell RNA-seq or Spatial Transcriptomics only between predefined cell groups, neglecting the existing hierarchical structure within CCC that are determined by signaling molecules, in particular, ligands and receptors. Here, we develop CrossChat, a novel computational framework designed to infer and analyze the hierarchical cell-cell communication structures using two complementary approaches: a global hierarchical structure using a multi-resolution clustering method, and multiple local hierarchical structures using a tree detection method. This framework provides a comprehensive approach to understand the hierarchical relationships within CCC that govern complex tissue functions. By applying our method to two nonspatial scRNA-seq datasets sampled from COVID-19 patients and mouse embryonic skin, and two spatial transcriptomics datasets generated from Stereo-seq of mouse embryo and 10x Visium of mouse wounded skin, we showcase CrossChat’s functionalities for analyzing both global and local hierarchical structures within cell-cell communication. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10558319
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactors that accurately represent known heteromeric molecular complexes. We then develop CellChat, a tool that is able to quantitatively infer and analyze intercellular communication networks from single-cell RNA-sequencing (scRNA-seq) data. CellChat predicts major signaling inputs and outputs for cells and how those cells and signals coordinate for functions using network analysis and pattern recognition approaches. Through manifold learning and quantitative contrasts, CellChat classifies signaling pathways and delineates conserved and context-specific pathways across different datasets. Applying CellChat to mouse and human skin datasets shows its ability to extract complex signaling patterns. Our versatile and easy-to-use toolkit CellChat and a web-based Explorer (http://www.cellchat.org/) will help discover novel intercellular communications and build cell-cell communication atlases in diverse tissues.more » « less
- 
            Abstract Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell–cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals.more » « less
- 
            Abstract Neural communication networks form the fundamental basis for brain function. These communication networks are enabled by emitted ligands such as neurotransmitters, which activate receptor complexes to facilitate communication. Thus, neural communication is fundamentally dependent on the transcriptome. Here we develop NeuronChat, a method and package for the inference, visualization and analysis of neural-specific communication networks among pre-defined cell groups using single-cell expression data. We incorporate a manually curated molecular interaction database of neural signaling for both human and mouse, and benchmark NeuronChat on several published datasets to validate its ability in predicting neural connectivity. Then, we apply NeuronChat to three different neural tissue datasets to illustrate its functionalities in identifying interneural communication networks, revealing conserved or context-specific interactions across different biological contexts, and predicting communication pattern changes in diseased brains with autism spectrum disorder. Finally, we demonstrate NeuronChat can utilize spatial transcriptomics data to infer and visualize neural-specific cell-cell communication.more » « less
- 
            Abstract Single cell profiling techniques including multi-omics and spatial-omics technologies allow researchers to study cell-cell variation within a cell population. These variations extend to biological networks within cells, in particular, the gene regulatory networks (GRNs). GRNs rewire as the cells evolve, and different cells can have different governing GRNs. However, existing GRN inference methods usually infer a single GRN for a population of cells, without exploring the cell-cell variation in terms of their regulatory mechanisms. Recently, jointly profiled single cell transcriptomics and chromatin accessibility data have been used to infer GRNs. Although methods based on such multi-omics data were shown to improve over the accuracy of methods using only single cell RNA-seq (scRNA-seq) data, they do not take full advantage of the single cell resolution chromatin accessibility data. We propose CeSpGRN (CellSpecificGeneRegulatoryNetwork inference), which infers cell-specific GRNs from scRNA-seq, single cell multi-omics, or single cell spatial-omics data. CeSpGRN uses a Gaussian weighted kernel that allows the GRN of a given cell to be learned from the sequencing profile of itself and its neighboring cells in the developmental process. The kernel is constructed from the similarity of gene expressions or spatial locations between cells. When the chromatin accessibility data is available, CeSpGRN constructs cell-specific prior networks which are used to further improve the inference accuracy. We applied CeSpGRN to various types of real-world datasets and inferred various regulation changes that were shown to be important in cell development. We also quantitatively measured the performance of CeSpGRN on simulated datasets and compared with baseline methods. The results show that CeSpGRN has a superior performance in reconstructing the GRN for each cell, as well as in detecting the regulatory interactions that differ between cells. CeSpGRN is available athttps://github.com/PeterZZQ/CeSpGRN.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
