skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: HOPE: Holistic Optimization Program for Electricity
In this paper, we present a novel open-source electricity systems optimization tool--the Holistic Optimization Program for Electricity (HOPE)--to assess emerging generation technology, inform policy design, and support planning. With a highly transparent, interpretable and compact model design, HOPE easily allows user access and modification, serving its main goal to benefit users beyond engineer communities and facilitate collaboration across the science-policy boundary. By activating different modes, the current version of HOPE (v1.0) offers flexibility in serving as either a Generation and Transmission Expansion Planning tool (GTEP) or a Production Cost Modelling tool (PCM). It includes modelling features such as long-term resource investments, short-term system operations, and a detailed representation of policies across various levels of regulated institutions. This paper outlines the building blocks of the model and its software structure. Case study results from using HOPE for the state of Maryland as well as Pennsylvania-New Jersey-Maryland (PJM) footprint are also provided.  more » « less
Award ID(s):
2330450
PAR ID:
10558324
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
SoftwareX
Volume:
29
Issue:
C
ISSN:
2352-7110
Page Range / eLocation ID:
101982
Subject(s) / Keyword(s):
Power system planning capacity expansion planning production cost model open-source software power system optimization Julia programming language
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While deep learning gradually penetrates operational planning, its inherent prediction errors may significantly affect electricity prices. This letter examines how prediction errors propagate into electricity prices, revealing notable pricing errors and their spatial disparity in congested power systems. To improve fairness, we propose to embed electricity market-clearing optimization as a deep learning layer. Differentiating through this layer allows for balancing between prediction and pricing errors, as oppose to minimizing prediction errors alone. This layer implicitly optimizes fairness and controls the spatial distribution of price errors across the system. We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing. 
    more » « less
  2. Electric load forecasting refers to forecasting the electricity demand at aggregated levels. Utilities use the predictions of this technique to keep a balance between electricity generation and consumption at each time and make accurate decision for power system planning, operations, and maintenance, etc. Based on prediction time horizon, electric load forecasting is classified to very short-term, short-term, medium-term, and long-term. In this paper, a multiple output Gaussian processes with multiple kernel learning is proposed to predict short-term electric load forecasting (predicting 24 load values for the next day) based on load, temperature, and dew point values of previous days. Mean absolute percentage error (MAPE) is used as a measure of prediction accuracy. By comparing MAPE values of the proposed method with the persistence method, it can been seen that the proposed method improves the persistence method MAPE up to 4%. 
    more » « less
  3. Accurate long-term electricity load forecasting is critical for energy planning, infrastructure development, and risk management, especially under increasing uncertainty from climate and economic shifts. This study proposes a multi-resolution probabilistic load forecasting framework that leverages temporal hierarchies to generate coherent forecasts at hourly, daily, monthly, and yearly levels. The model integrates climate and economic indicators and employs tailored forecasting techniques at each resolution, including XGBoost and ARIMAX. Initially incoherent forecasts across time scales are reconciled using advanced methods such as Ordinary Least Squares (OLS), Weighted Least Squares with Series Variance Scaling (WLS_V), and Structural Scaling (WLS_S) to ensure consistency. Using historical data from Alberta, Canada, the proposed approach improves the accuracy of deterministic forecasts and enhances the reliability of probabilistic forecasts, particularly when using the OLS reconciliation method. These results highlight the value of temporal hierarchy structures in producing high-resolution long-horizon load forecasts, providing actionable insights for utilities and policymakers involved in long-term energy planning and system optimization. 
    more » « less
  4. Among approaches for provably safe reinforcement learning, Model Predictive Shielding (MPS) has proven effective at complex tasks in continuous, high-dimensional state spaces, by leveraging a backup policy to ensure safety when the learned policy attempts to take risky actions. However, while MPS can ensure safety both during and after training, it often hinders task progress due to the conservative and task-oblivious nature of backup policies. This paper introduces Dynamic Model Predictive Shielding (DMPS), which optimizes reinforcement learning objectives while maintaining provable safety. DMPS employs a local planner to dynamically select safe recovery actions that maximize both short-term progress as well as long-term rewards. Crucially, the planner and the neural policy play a synergistic role in DMPS. When planning recovery actions for ensuring safety, the planner utilizes the neural policy to estimate long-term rewards, allowing it to observe beyond its short-term planning horizon. Conversely, the neural policy under training learns from the recovery plans proposed by the planner, converging to policies that are both high-performing and safe in practice. This approach guarantees safety during and after training, with bounded recovery regret that decreases exponentially with planning horizon depth. Experimental results demonstrate that DMPS converges to policies that rarely require shield interventions after training and achieve higher rewards compared to several state-of-the-art baselines 
    more » « less
  5. Babski-Reeves, K.; Eksioglu, B.; Hampton, D. (Ed.)
    In this paper, we study an integrated hurricane relief logistics and evacuation planning (HRLEP) problem. We propose stochastic optimization models and methods that integrate the hurricane relief item pre-positioning problem and the hurricane evacuation planning problem, which are often treated as separate problems in the literature, by incorporating the forecast information as well as the forecast errors (FE). Specifically, we fit historical FE data into an auto-regressive model of order one (AR-1), from which we generate FE realizations to create evacuation demand scenarios. We compare a static decision policy based on the proposed stochastic optimization model with a dynamic policy obtained by applying this model in a rolling-horizon (RH) procedure. We conduct a preliminary numerical experiment based on real-world data to validate the value of stochastic optimization and the value of the dynamic policy based on the RH procedure. 
    more » « less