Indigenous communities remain among the most underrepresented groups in computing and STEM fields, facing systemic barriers to equitable participation in computer science (CS) education. This study examines how Indigenous-serving teachers, through a sustained professional development (PD) program, design and implement culturally responsive computing (CRC) curricula in Indigenous-serving schools. Guided by the research question: How does sustained CS professional development inform the design of culturally responsive computing curricula by experienced CS teachers in Indigenous-serving schools? We employed a natural language processing (NLP) data fusion approach that integrates text mining and qualitative thematic analysis to investigate how teachers incorporate Indigenous knowledge into computing instruction. Our findings reveal three emergent themes in teacher learning and lesson design: Creating opportunities to access culture through computation, Leveraging Research and Critical Thinking Skills to Critically Engage Students with Computing, and Reflection, refinement, and professional growth through ongoing collaboration. These themes underscore the impact of CRC on bridging cultural traditions with computing, fostering engagement, and enhancing Indigenous students’ sense of belonging in CS. By supporting teachers in developing culturally relevant lessons that integrate storytelling, traditional arts, and computational thinking, this research contributes to the broader discourse on inclusive CS education. This study informs future efforts to expand Indigenous student participation in computing by highlighting the role of culturally sustaining pedagogy in professional development and curriculum design.
more »
« less
Elementary Teachers Designing Culturally Grounded Cases for Preservice Teachers: A Process for Reciprocal Learning
Connecting university methods courses and teacher daily practice is a persistent challenge in teacher education. Another challenge is preparing teachers to enact equitable instruction that meets the needs of an increasingly diverse student population. We take on these challenges by supporting practicing elementary teachers to design case-based teaching scenarios for preservice teachers that engage them with enacting culturally grounded mathematics and science instruction. We draw on data from workshops with teachers to illustrate how the design process elevates teachers’ voices while also supporting their own learning. Workshop features that proved powerful for teachers included collaborating with colleagues, offering and receiving peer feedback, and working with a table describing key features of culturally grounded pedagogy in mathematics and science.
more »
« less
- Award ID(s):
- 2142136
- PAR ID:
- 10558325
- Publisher / Repository:
- National Council of Teachers of Mathematics
- Date Published:
- Journal Name:
- Mathematics Teacher Educator
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2167-9789
- Page Range / eLocation ID:
- 195 to 210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Efforts towards providing inclusive science and mathematics education for marginalized students are increasingly found in literature advocating for equity-oriented instruction through supporting students’ critical consciousness. Despite a growing body of research centering on teachers’ development of culturally relevant pedagogies, studies examining how teachers support students’ critical consciousness development are scarce in the context of science and mathematics education. Thus, this systematic review uses empirical literature on critical consciousness to explore teachers’ experiences integrating sociopolitical issues into their science and mathematics classrooms. Using keywords synonymous with critical consciousness, 19 studies were identified through searches in various databases. The 19 studies were analyzed through an iterative coding process to identify how teachers supported students’ critical reflection, critical efficacy, and critical action by analyzing reported incorporation of sociopolitical issues, instructional strategies, and science and mathematical practices. The results highlight four themes: (1) Teachers discussed sociopolitical issues at various distances to the self (2) Classroom discussions and community projects were used to engage students in their critical consciousness (3) Science and mathematics instruction and sociopolitical issues were used synergistically to further student understanding (4) Critical efficacy was seldom explicitly discussed in the studies. Implications of this study include suggestions for future research and practices.more » « less
-
Abstract The complexity of mathematics teaching is especially evident in lessons where teachers build on students’ genuine ideas, such as problem-based lessons. To enhance teachers’ capacity for rich discussions in problem-based instruction, we have developed a unique approximation of practice: digital asynchronous simulations where teachers make subject-specific decisions for a virtual teacher avatar. The simulations are based on materials and principles from a practice-based professional development (PD) program, implemented with small groups of teachers. The self-paced simulation model offers flexibility and scalability, allowing more teachers to participate on their own schedules, but it lacks key affordances of collaborative PD. To examine how to leverage the affordances of collaborative, practice-based PD, this paper uses a design-based research approach to explicate the mechanisms in which digital simulations can support mathematics teachers’ learning about problem-based lessons. We focus on two cycles of design, implementation, analysis, and revisions of the simulation model, drawing on data from focus groups with mathematics teacher educators, prospective teachers’ performance, and teachers’ reflective assignments. The analysis illustrates how two design principles –Authenticity to the teacher’s work, andNuanced feedback– were transformed to better reflect aspects of practice-based teacher learning. We argue that self-paced, asynchronous simulations with indirect feedback can effectively emulate aspects of collaborative, practice-based PD in supporting teachers’ growth. The paper also contributes to the literature on mathematics teachers’ noticing and decision-making, examining how the two interact in simulated environments. We suggest implications for designing practice-based asynchronous digital simulations, drawing on emerging technologies.more » « less
-
Baldwin, Amy; Danns, Donna; Howe, Chad (Ed.)In this presentation, we will analyze and explain how three university faculty designed an intensive 12-day science methods course for preservice teachers to learn about science. The course, which is part of the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation, is focused on differentiating science and engineering content for emerging bilingual students (English/Spanish). After the course, teacher educators then implement this content with 4th - 8th grade students in the STEM Summer Scholars Institute, a 15-day academic enrichment program for emerging bilingual students. Not only will we explain how this differentiation toolkit is helping preservice teachers to build more inclusive and supporting environments in science in their current practice, but we also explore how other content, such asco-teaching models and science and engineering methodologies, shaped their teaching skills. The differentiation toolkit consists of the use of technology, hands-on materials, and multimodalities, and we examine how the preservice teacher-students interactions are structured following a culturally and linguistically relevant methodology for the classroom. Project faculty and teacher educators will discuss our experiences in implementing these methodologies (science and culturally and linguistically relevant practices) including areas of growth.more » « less
-
As computer science (CS) education becomes more prevalent in K-12 instruction, it is critical for educators, researchers, and curriculum developers to identify culturally responsive and pedagogically inclusive approaches that can increase participation, access, and feelings of belonging for students from historically marginalized communities. In response, we developed an equity-centered curricular framework and illustrative crosswalk that synchronizes three distinct pedagogical approaches: culturally responsive pedagogy (CRP), Universal Design for Learning (UDL), and project-based learning (PBL). We describe the framework’s theoretical underpinnings and explain how this framework informed the development of an integrated elementary science+CS curricular unit and provide examples of its implementation. Next, we describe the relationship between our framework, the integrated curricular unit, and educative materials designed to help teachers use the lessons and transform their practice. Finally, we highlight the framework’s potential for broader implementation in the quest to promote equitable CS instruction grounded in the experiences and perspectives of diverse student populations. The crosswalk is a graphical representation of the framework that communicates relationships amongst the elements in a digestible and practical way. This Equity-Centered Curricular Crosswalk addresses both lesson features and teacher practices, to underscore our belief that the responsibility of equity-based pedagogy should not be solely borne by teachers. As educators, researchers, and curriculum developers consider their interconnected roles and responsibilities in the enactment of CRP and UDL, the crosswalk provides an important link between equity-based instructional theories and the realities of classroom practices.more » « less
An official website of the United States government

