Abstract Understanding how climate change impacts trailing‐edge populations requires information about how abiotic and biotic factors limit their distributions. Theory indicates that socially mediated Allee effects can limit species distributions by suppressing growth rates of peripheral populations when social information is scarce.The goal of our research was to determine if socially mediated Allee effects limit the distribution of Canada warblerCardellina canadensisat the trailing‐edge of the geographic range.Using 4 years of observational data from 71 sites and experimental data at 10 sites, we tested two predictions of the socially mediated range limitation hypothesis: (a) local growth rates should be positively correlated with local density and (b) the addition of social cues immediately outside the trailing‐edge range boundary would result in colonization of formerly unoccupied habitat and increased growth rates. During the third breeding season, social cues were experimentally added at 10 formerly unoccupied sites within and beyond the species’ local range margin to determine if the addition of social information could increase density and effectively expand the species’ range.No experimental sites were colonized after adding social cues and no evidence of Allee effects was found. Rather, temperature, precipitation and negative density dependence strongly influenced population growth rates.Although theoretical models indicate that the presence of socially mediated Allee effects at species range boundaries could increase the rate of climate‐induced range shifts and local extinctions, empirical results from the first test of this hypothesis suggest that Allee effects play a minimal role in limiting species’ distributions.
more »
« less
Limit models in strictly stable abstract elementary classes
Abstract In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that is an abstract elementary class satisfyingthe joint embedding and amalgamation properties with no maximal model of cardinality ,stability in ,,continuity for (i.e., if and is a limit model witnessed by for some limit ordinal and there exists so that does not ‐split over for all , then does not ‐split over ). Then for and limit ordinals both with cofinality , if satisfies symmetry for (or just ‐symmetry), then, for any and that are and ‐limit models over , respectively, we have that and are isomorphic over . Note that no tameness is assumed.
more »
« less
- Award ID(s):
- 2339018
- PAR ID:
- 10558370
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Mathematical Logic Quarterly
- Volume:
- 70
- Issue:
- 4
- ISSN:
- 0942-5616
- Format(s):
- Medium: X Size: p. 438-453
- Size(s):
- p. 438-453
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This perspective piece discusses a set of attentional phenomena that are not easily accommodated within current theories of attentional selection. We call these phenomena attentional platypuses, as they allude to an observation that within biological taxonomies the platypus does not fit into either mammal or bird categories. Similarly, attentional phenomena that do not fit neatly within current attentional models suggest that current models are in need of a revision. We list a few instances of the “attentional platypuses” and then offer a new approach, that we term dynamically weighted prioritization, stipulating that multiple factors impinge onto the attentional priority map, each with a corresponding weight. The interaction between factors and their corresponding weights determines the current state of the priority map which subsequently constrains/guides attentional allocation. We propose that this new approach should be considered as a supplement to existing models of attention, especially those that emphasize categorical organizations. This article is categorized under:Psychology > AttentionPsychology > Perception and PsychophysicsNeuroscience > Cognitionmore » « less
-
Abstract Let , where , , are pairwise coprime. Let be the discrete Schrödinger operator, where Δ is the discrete Laplacian on and the potential is Γ‐periodic. We prove three rigidity theorems for discrete periodic Schrödinger operators in any dimension :If at some energy level, Fermi varieties of two real‐valued Γ‐periodic potentialsVandYare the same (this feature is referred to asFermi isospectralityofVandY), andYis a separable function, thenVis separable;If two complex‐valued Γ‐periodic potentialsVandYare Fermi isospectral and both and are separable functions, then, up to a constant, lower dimensional decompositions and are Floquet isospectral, ;If a real‐valued Γ‐potentialVand the zero potential are Fermi isospectral, thenVis zero.In particular, all conclusions in (1), (2) and (3) hold if we replace the assumption “Fermi isospectrality” with a stronger assumption “Floquet isospectrality”.more » « less
-
Abstract Numerous theoretical models have demonstrated that migration, a seasonal animal movement behaviour, can minimize the risks and costs of parasite infection. Past work on migration–infection interactions assumes migration is the only strategy available to organisms for dealing with the parasite infection, that is they migrate to a different environment to recover or escape from infection. Thus, migration is similar to the non‐spatial strategy of resistance, where hosts prevent infection or kill parasites once infected. However, an alternative defence strategy is to tolerate the infection and experience a lower cost to the infection. To our knowledge, no studies have examined how migration can change based on combining two host strategies (migration and tolerance) for dealing with parasites.In this paper, we aim to understand how both parasite transmission and infection tolerance can influence the host's migratory behaviour.We constructed a model that incorporates two host strategies (migration and tolerance) to understand whether allowing for tolerance affects the proportion of the population that migrates at equilibrium in response to infection.We show that the benefits of tolerance can either decrease or increase the host's migration. Also, if the benefit of migration is great, then individuals are more likely to migrate regardless of the presence of tolerance. Finally, we find that the transmission rate of parasite infection can either decrease or increase the tolerant host's migration, depending on the cost of migration.These findings highlight that adopting two defence strategies is not always beneficial to the hosts. Instead, a single strategy is often better, depending on the costs and benefits of the strategies and infection pressures. Our work further suggests that multiple host‐defence strategies as a potential explanation for the evolution of migration to minimize the parasite infection. Moreover, migration can also affect the ecological and evolutionary dynamics of parasite–host interactions.more » « less
-
Abstract Bayesian hierarchical models allow ecologists to account for uncertainty and make inference at multiple scales. However, hierarchical models are often computationally intensive to fit, especially with large datasets, and researchers face trade‐offs between capturing ecological complexity in statistical models and implementing these models.We present a recursive Bayesian computing (RB) method that can be used to fit Bayesian models efficiently in sequential MCMC stages to ease computation and streamline hierarchical inference. We also introduce transformation‐assisted RB (TARB) to create unsupervised MCMC algorithms and improve interpretability of parameters. We demonstrate TARB by fitting a hierarchical animal movement model to obtain inference about individual‐ and population‐level migratory characteristics.Our recursive procedure reduced computation time for fitting our hierarchical movement model by half compared to fitting the model with a single MCMC algorithm. We obtained the same inference fitting our model using TARB as we obtained fitting the model with a single algorithm.For complex ecological statistical models, like those for animal movement, multi‐species systems, or large spatial and temporal scales, the computational demands of fitting models with conventional computing techniques can limit model specification, thus hindering scientific discovery. Transformation‐assisted RB is one of the most accessible methods for reducing these limitations, enabling us to implement new statistical models and advance our understanding of complex ecological phenomena.more » « less
An official website of the United States government
