skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 19, 2025

Title: Increased thermal stability and retained antibacterial properties in a sulbactam and amantadine salt: towards effective antibacterial–antiviral combination therapies
We describe the formation of a multidrug salt comprising sulbactam (SUL, β-lactamase inhibitor) and amantadine (AMNH, antiviral). Physicochemical investigation of the SUL·AMNH salt revealed enhanced thermal stability compared to pristine starting materials. In vitro studies found that salt formation in SUL·AMNH does not disrupt antibacterial activity against model organisms Escherichia coli and Staphylococcus epidermidis. To our knowledge, we show the first β-lactamase inhibitor-antiviral salt where both components have been approved by the U.S. Food and Drug Administration (FDA), and the first multicomponent solid containing SUL. We envisage our strategy could inspire the design of multicomponent solids for antimicrobial combination therapies.  more » « less
Award ID(s):
2319929
PAR ID:
10558425
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
RSC Pharmaceutics
ISSN:
2976-8713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the long-standing holy grails of molecular evolution has been the ability to predict an organism’s fitness directly from its genotype. With such predictive abilities in hand, researchers would be able to more accurately forecast how organisms will evolve and how proteins with novel functions could be engineered, leading to revolutionary advances in medicine and biotechnology. In this work, we assemble the largest reported set of experimental TEM-1 β-lactamase folding free energies and use this data in conjunction with previously acquired fitness data and computational free energy predictions to determine how much of the fitness of β-lactamase can be directly predicted by thermodynamic folding and binding free energies. We focus upon β-lactamase because of its long history as a model enzyme and its central role in antibiotic resistance. Based upon a set of 21 β-lactamase single and double mutants expressly designed to influence protein folding, we first demonstrate that modeling software designed to compute folding free energies such as FoldX and PyRosetta can meaningfully, although not perfectly, predict the experimental folding free energies of single mutants. Interestingly, while these techniques also yield sensible double mutant free energies, we show that they do so for the wrong physical reasons. We then go on to assess how well both experimental and computational folding free energies explain single mutant fitness. We find that folding free energies account for, at most, 24% of the variance in β-lactamase fitness values according to linear models and, somewhat surprisingly, complementing folding free energies with computationally-predicted binding free energies of residues near the active site only increases the folding-only figure by a few percent. This strongly suggests that the majority of β-lactamase’s fitness is controlled by factors other than free energies. Overall, our results shed a bright light on to what extent the community is justified in using thermodynamic measures to infer protein fitness as well as how applicable modern computational techniques for predicting free energies will be to the large data sets of multiply-mutated proteins forthcoming 
    more » « less
  2. Abstract TEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more than 100 mutational changes, but conserved fold and catalytic residues, suggesting a role for dynamics in enzyme evolution. Here, we develop a conformational dynamics computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism. By deliberately weighting and altering the conformational dynamics of a putative Precambrian β-lactamase, we engineer enzyme specificity that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements. Our conformational dynamics design thus re-enacts the evolutionary process and provides a rational allosteric approach for manipulating function while conserving the enzyme active site. 
    more » « less
  3. null (Ed.)
    New Delhi metallo-β-lactamase (NDM) grants resistance to a broad spectrum of β-lactam antibiotics, including last-resort carbapenems, and is emerging as a global antibiotic resistance threat. Limited zinc availability adversely impacts the ability of NDM-1 to provide resistance, but a number of clinical variants have emerged that are more resistant to zinc scarcity (e.g., NDM-15). To provide a novel tool to better study metal ion sequestration in host–pathogen interactions, we describe the development of a fluorescent probe that reports on the dynamic metalation state of NDM within Escherichia coli. The thiol-containing probe selectively coordinates the dizinc metal cluster of NDM and results in a 17-fold increase in fluorescence intensity. Reversible binding enables competition and time-dependent studies that reveal fluorescence changes used to detect enzyme localization, substrate and inhibitor engagement, and changes to metalation state through the imaging of live E. coli using confocal microscopy. NDM-1 is shown to be susceptible to demetalation by intracellular and extracellular metal chelators in a live-cell model of zinc dyshomeostasis, whereas the NDM-15 metalation state is shown to be more resistant to zinc flux. The development of this reversible turn-on fluorescent probe for the metalation state of NDM provides a new tool for monitoring the impact of metal ion sequestration by host defense mechanisms and for detecting inhibitor–target engagement during the development of therapeutics to counter this resistance determinant. 
    more » « less
  4. null (Ed.)
    The relationship between protein motions (i.e., dynamics) and enzymatic function has begun to be explored in β-lactamases as a way to advance our understanding of these proteins. In a recent study, we analyzed the dynamic profiles of TEM-1 (a ubiquitous class A β-lactamase) and several ancestrally reconstructed homologues. A chief finding of this work was that rigid residues that were allosterically coupled to the active site appeared to have profound effects on enzyme function, even when separated from the active site by many angstroms. In the present work, our aim was to further explore the implications of protein dynamics on β-lactamase function by altering the dynamic profile of TEM-1 using computational protein design methods. The Rosetta software suite was used to mutate amino acids surrounding either rigid residues that are highly coupled to the active site or to flexible residues with no apparent communication with the active site. Experimental characterization of ten designed proteins indicated that alteration of residues surrounding rigid, highly coupled residues, substantially affected both enzymatic activity and stability; in contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Our results provide additional insight into the structure-function relationship present in the TEM family of β-lactamases. Furthermore, the integration of computational protein design methods with analyses of protein dynamics represents a general approach that could be used to extend our understanding of the relationship between dynamics and function in other enzyme classes. 
    more » « less
  5. Efficient mechanism-based design of antibiotics that are not susceptible to β-lactamases is hindered by the lack of comprehensive knowledge on the energetic landscapes for the hydrolysis of various β-lactams. Herein, we adopted efficient quantum mechanics/molecular mechanics simulations to explore the acylation reaction catalyzed by CTX-M-44 (Toho-1) β-lactamase. We show that the catalytic pathways for β-lactam hydrolysis are correlated to substrate scaffolds: using Glu166 as the only general base for acylation is viable for ampicillin but prohibitive for cefalexin. The present computational workflow provides quantitative insights to facilitate the optimization of future β-lactam antibiotics. 
    more » « less