skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post-depositional modification on seasonal-to-interannual timescales alters the deuterium-excess signals in summer snow layers in Greenland
Abstract. We document the isotopic evolution of near-surface snow at the East Greenland Ice Core Project (EastGRIP) ice core site in northeast Greenland using a time-resolved array of 1 m deep isotope (δ18O, δD) profiles. The snow profiles were taken from May–August during the 2017–2019 summer seasons. An age–depth model was developed and applied to each profile, mitigating the impacts of stratigraphic noise on isotope signals. Significant changes in deuterium excess (d) are observed in surface snow and near-surface snow as the snow ages. Decreases in d of up to 5 ‰ occur during summer seasons after deposition during two of the three summer seasons observed. The d always experiences a 3 ‰–5 ‰ increase after aging 1 year in the snow due to a broadening of the autumn d maximum. Models of idealized scenarios coupled with prior work indicate that the summertime post-depositional changes in d (Δd) can be explained by a combination of surface sublimation, forced ventilation of the near-surface snow down to 20–30 cm, and isotope-gradient-driven diffusion throughout the column. The interannual Δd is also partly explained with isotope-gradient-driven diffusion, but other mechanisms are at work that leave a bias in the d record. Thus, d does not just carry information about source-region conditions and transport history as is commonly assumed, but also integrates local conditions into summer snow layers as the snow ages through metamorphic processes. Finally, we observe a dramatic increase in the seasonal isotope-to-temperature sensitivity, which can be explained solely by isotope-gradient-driven diffusion. Our results are dependent on the site characteristics (e.g., wind, temperature, accumulation rate, snow properties) but indicate that more process-based research is necessary to understand water isotopes as climate proxies. Recommendations for monitoring and physical modeling are given, with special attention to the d parameter.  more » « less
Award ID(s):
2137083
PAR ID:
10558441
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Copernicus GmbH
Date Published:
Journal Name:
The Cryosphere
Volume:
18
Issue:
8
ISSN:
1994-0424
Page Range / eLocation ID:
3653 to 3683
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Orbital‐scale Indian Summer Monsoon variability is often interpreted as a direct response to northern hemisphere summer insolation. Here we present a continuous (0–640 kyr) orbital scale precipitation isotope (δDprecip) record using leaf wax δD from the core monsoon zone of India. The δDpreciprecord is quantitatively coherent with, and δDprecipminima in phase with, greenhouses gas maxima, and ice volume minima across all orbital bands. The δDpreciprecord is also coherent and in phase with the two existing orbital‐scale Indian speleothem δ18O records, demonstrating a consistent regional response among independent proxies. These findings preclude interpretation of Indian precipitation isotope records as a direct response to northern hemisphere summer insolation. Rather, they dominantly reflect changes in moisture source and transport paths associated with changes in greenhouse gases and ice volume. The orbital‐scale precipitation isotope responses of the Indian and East Asian monsoon systems are uncoupled and are driven by different forcings. 
    more » « less
  2. Abstract This study investigates cloud formation and transitions in cloud types at Summit, Greenland, during 16–22 September 2010, when a warm, moist air mass was advected to Greenland from lower latitudes. During this period there was a sharp transition between high ice clouds and the formation of a lower stratocumulus deck at Summit. A regional mesoscale model is used to investigate the air masses that form these cloud systems. It is found that the high ice clouds form in originally warm, moist air masses that radiatively cool while being transported to Summit. A sensitivity study removing high ice clouds demonstrates that the primary impact of these clouds at Summit is to reduce cloud liquid water embedded within the ice cloud and water vapor in the boundary layer due to vapor deposition on snow. The mixed-phase stratocumulus clouds form at the base of cold, dry air masses advected from the northwest above 4 km. The net surface radiative fluxes during the stratocumulus period are at least 20 W m−2 larger than during the ice cloud period, indicating that, in seasons other than summer, cold, dry air masses advected to Summit above the boundary layer may radiatively warm the top of the Greenland Ice Sheet more effectively than warm, moist air masses advected from lower latitudes. 
    more » « less
  3. The Radio Neutrino Observatory in Greenland (RNO-G) is the first in-ice radio array in the northern hemisphere for the detection of ultra-high energy neutrinos via the coherent radio emission from neutrino-induced particle cascades within the ice. The array is currently in phased construction near Summit Station on the Greenland ice sheet, with 7 stations deployed during the first two boreal summer field seasons of 2021 and 2022. In this paper, we describe the installation and system design of these initial RNO-G stations, and discuss the performance of the array as of summer 2024. 
    more » « less
  4. This dataset contains the raw data associated with the manuscript entitled: Aquatic Moss δ18O as a Proxy for Seasonally Resolved Lake Water δ18O, Northwest Greenland (Puleo et al., 2024). Reconstructing past climate seasonality is fundamental to understanding the nature of past climate changes. This is especially true in the Arctic, where climate is intensely seasonal and proxies that can distinguish climate conditions of multiple seasons in a single year are relatively rare. We propose that submerged aquatic mosses, which are abundant subfossils in some Arctic lake sediments and have distinctive seasonal growth morphologies, can be used to estimate past lake water oxygen isotope composition (δ18Olw) across multiple seasons. Aquatic mosses are abundant, well preserved, and grow continuously in Arctic lakes whenever light is available, with some species displaying unique seasonal morphologies influenced by water temperature. Although Greenland paleorecords support that aquatic moss oxygen isotope values (δ18Oom) reflect the δ18O values of lake water, no modern calibration between δ18Oom and δ18Olw exists in Greenland, as aquatic moss samples are composed largely, but not entirely, of cellulose. We present a modern δ18Oom vs. δ18Olw calibration using multiple moss species or morphotypes from eight lakes and ponds near Pituffik (Thule), northwest Greenland. We find strong linear relationships between the δ18Oom and δ18Olw values of multiple species or morphotypes across the range of relatively low δ18Olw values at Pituffik, and our results indicate isotopic fractionations are similar to those found previously at lower latitudes. To assess the potential of mosses as archives of seasonal δ18Olw values, we analyzed δ18Oom in season-specific segments of moss strands, with seasons identified based upon growth morphology. Moss inferred lake water δ18O values (δ18Olwom) are higher in autumn than spring or summer, likely due to increasing contributions of isotopically heavier precipitation and the cumulative effects of lake water evaporation throughout the ice-free season. For moss subsampled throughout summer, δ18Olwom values generally increased through the season in parallel with observed δ18Olw values. Potential temperature dependent fractionation effects during biosynthesis, however, remain unconstrained and should be further addressed with future research. Overall, these findings suggest that aquatic mosses from lake sediments could be used to directly resolve climate seasonality of the past. Puleo, P.J.K., Akers, P.D., Kopec, B.G., Welker, J.M., Bailey, H., Osburn, M.R., Riis, T., Axford, Y., 2024. Aquatic moss δ18O as a proxy for seasonally resolved lake water δ18O, northwest Greenland. Quaternary Science Reviews 334, 1-11. 
    more » « less
  5. Abstract. Above polar ice sheets, atmospheric water vapor exchangeoccurs across the planetary boundary layer (PBL) and is an importantmechanism in a number of processes that affect the surface mass balance ofthe ice sheets. Yet, this exchange is not well understood and hassubstantial implications for modeling and remote sensing of the polarhydrologic cycle. Efforts to characterize the exchange face substantiallogistical challenges including the remoteness of ice sheet field camps,extreme weather conditions, low humidity and temperature that limit theeffectiveness of instruments, and dangers associated with flying mannedaircraft at low altitudes. Here, we present an unmanned aerial vehicle (UAV)sampling platform for operation in extreme polar environments that iscapable of sampling atmospheric water vapor for subsequent measurement ofwater isotopes. This system was deployed to the East Greenland Ice-coreProject (EastGRIP) camp in northeast Greenland during summer 2019. Foursampling flight missions were completed. With a suite of atmosphericmeasurements aboard the UAV (temperature, humidity, pressure, GPS) wedetermine the height of the PBL using online algorithms, allowing forstrategic decision-making by the pilot to sample water isotopes above andbelow the PBL. Water isotope data were measured by a Picarro L2130-iinstrument using flasks of atmospheric air collected within the nose cone ofthe UAV. The internal repeatability for δD and δ18O was2.8 ‰ and 0.45 ‰, respectively,which we also compared to independent EastGRIP tower-isotope data. Based onthese results, we demonstrate the efficacy of this new UAV-isotope platformand present improvements to be utilized in future polar field campaigns. Thesystem is also designed to be readily adaptable to other fields of study,such as measurement of carbon cycle gases or remote sensing of groundconditions. 
    more » « less