skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post-depositional modification on seasonal-to-interannual timescales alters the deuterium-excess signals in summer snow layers in Greenland
Abstract. We document the isotopic evolution of near-surface snow at the East Greenland Ice Core Project (EastGRIP) ice core site in northeast Greenland using a time-resolved array of 1 m deep isotope (δ18O, δD) profiles. The snow profiles were taken from May–August during the 2017–2019 summer seasons. An age–depth model was developed and applied to each profile, mitigating the impacts of stratigraphic noise on isotope signals. Significant changes in deuterium excess (d) are observed in surface snow and near-surface snow as the snow ages. Decreases in d of up to 5 ‰ occur during summer seasons after deposition during two of the three summer seasons observed. The d always experiences a 3 ‰–5 ‰ increase after aging 1 year in the snow due to a broadening of the autumn d maximum. Models of idealized scenarios coupled with prior work indicate that the summertime post-depositional changes in d (Δd) can be explained by a combination of surface sublimation, forced ventilation of the near-surface snow down to 20–30 cm, and isotope-gradient-driven diffusion throughout the column. The interannual Δd is also partly explained with isotope-gradient-driven diffusion, but other mechanisms are at work that leave a bias in the d record. Thus, d does not just carry information about source-region conditions and transport history as is commonly assumed, but also integrates local conditions into summer snow layers as the snow ages through metamorphic processes. Finally, we observe a dramatic increase in the seasonal isotope-to-temperature sensitivity, which can be explained solely by isotope-gradient-driven diffusion. Our results are dependent on the site characteristics (e.g., wind, temperature, accumulation rate, snow properties) but indicate that more process-based research is necessary to understand water isotopes as climate proxies. Recommendations for monitoring and physical modeling are given, with special attention to the d parameter.  more » « less
Award ID(s):
2137083
PAR ID:
10558441
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Copernicus GmbH
Date Published:
Journal Name:
The Cryosphere
Volume:
18
Issue:
8
ISSN:
1994-0424
Page Range / eLocation ID:
3653 to 3683
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ice core water isotope records from Greenland and Antarctica are a valuableproxy for paleoclimate reconstruction, yet the processes influencing theclimate signal stored in the isotopic composition of the snow are beingchallenged and revisited. Apart from precipitation input, post-depositionalprocesses such as wind-driven redistribution and vapor–snow exchange processes at and below the surface are hypothesized to contribute to the isotope climate signal subsequently stored in the ice. Recent field studies have shown that surface snow isotopes vary between precipitation events and co-vary with vapor isotopes, which demonstrates that vapor–snow exchange is an important driving mechanism. Here we investigate how vapor–snow exchange processes influence the isotopic composition of the snowpack. Controlled laboratory experiments under forced sublimation show an increase in snow isotopic composition of up to 8 ‰ δ18O in the uppermost layer due to sublimation, with an attenuated signal down to 3 cm snow depth over the course of 4–6 d. This enrichment is accompanied by a decrease in the second-order parameter d-excess, indicating kinetic fractionation processes. Our observations confirm that sublimation alone can lead to a strong enrichment of stable water isotopes in surface snow and subsequent enrichment in the layers below. To compare laboratory experiments with realistic polar conditions, we completed four 2–3 d field experiments at the East Greenland Ice Core Project site (northeast Greenland) in summer 2019. High-resolution temporal sampling of both natural and isolated snow was conducted under clear-sky conditions and demonstrated that the snow isotopic composition changes on hourly timescales. A change of snow isotope content associated with sublimation is currently not implemented in isotope-enabled climate models and is not taken into account when interpreting ice core isotopic records. However, our results demonstrate that post-depositional processes such as sublimation contribute to the climate signal recorded in the water isotopes in surface snow, in both laboratory and field settings. This suggests that the ice core water isotope signal may effectively integrate across multiple parameters, and the ice core climate record should be interpreted as such, particularly in regions of low accumulation. 
    more » « less
  2. Abstract Orbital‐scale Indian Summer Monsoon variability is often interpreted as a direct response to northern hemisphere summer insolation. Here we present a continuous (0–640 kyr) orbital scale precipitation isotope (δDprecip) record using leaf wax δD from the core monsoon zone of India. The δDpreciprecord is quantitatively coherent with, and δDprecipminima in phase with, greenhouses gas maxima, and ice volume minima across all orbital bands. The δDpreciprecord is also coherent and in phase with the two existing orbital‐scale Indian speleothem δ18O records, demonstrating a consistent regional response among independent proxies. These findings preclude interpretation of Indian precipitation isotope records as a direct response to northern hemisphere summer insolation. Rather, they dominantly reflect changes in moisture source and transport paths associated with changes in greenhouse gases and ice volume. The orbital‐scale precipitation isotope responses of the Indian and East Asian monsoon systems are uncoupled and are driven by different forcings. 
    more » « less
  3. Abstract On polar ice sheets, water vapor interacts with surface snow, and through the exchange of water molecules, imprints an isotopic climate signal into the ice sheet. This exchange is not well understood due to sparse observations in the atmosphere. There are currently no published vertical profiles of water isotopes above ice sheets that span the planetary boundary layer and portions of the free troposphere. Here, we present a novel data set of water‐vapor isotopes (O, D, ) and meteorological variables taken by fixed‐wing uncrewed aircraft on the northeast Greenland Ice Sheet (GIS). During June–July (2022), we collected 104 profiles of water‐vapor isotopes and meteorological variables up to 1,500 m above ground level. Concurrently, surface snow samples were collected at 12‐hr intervals, allowing connection to surface‐snow processes. We pair observations with modeling output from a regional climate model as well as an atmospheric transport and water‐isotope distillation model. Climate model output of mean temperature and specific humidity agrees well with observations, with a mean difference of +0.095°C and −0.043 g/kg (−2.91%), respectively. We find evidence that along an air parcel pathway, the distillation model is not removing enough water prior to onsite arrival. Below the mean temperature inversion (200 m), water‐isotope observations indicate a kinetic fractionating process, likely the result of mixing sublimated vapor from the ice sheet surface along with an unknown fraction of katabatic wind vapor. Modeled does not agree well with observations, a result that requires substantial future analysis of kinetic fractionation processes along the entire moisture pathway. 
    more » « less
  4. Thiemens, Mark (Ed.)
    Pleistocene Ice Ages display abrupt Dansgaard–Oeschger (DO) climate oscillations that provide prime examples of Earth System tipping points—abrupt transition that may result in irreversible change. Greenland ice cores provide key records of DO climate variability, but gas-calibrated estimates of the temperature change magnitudes have been limited to central and northwest Greenland. Here, we present ice-core δ15N-N2records from south (Dye 3) and coastal east Greenland (Renland) to calibrate the local water isotope thermometer and provide a Greenland-wide spatial characterization of DO event magnitude. We combine these data with existing records of δ18O, deuterium excess, and accumulation rates to create a multiproxy “fingerprint” of the DO impact on Greenland. Isotope-enabled climate models have skill in simulating the observational multiproxy DO event impact, and we use a series of idealized simulations with such models to identify regions of the North Atlantic that are critical in explaining DO variability. Our experiments imply that wintertime sea ice variation in the subpolar gyre, rather than the commonly invoked Nordic Seas, is both a sufficient and a necessary condition to explain the observed DO impacts in Greenland, whatever the distal cause. Moisture-tagging experiments support the idea that Greenland DO isotope signals may be explained almost entirely via changes in the vapor source distribution and that site temperature is not a main control on δ18O during DO transitions, contrary to the traditional interpretation. Our results provide a comprehensive, multiproxy, data-model synthesis of abrupt DO climate variability in Greenland. 
    more » « less
  5. Abstract This study investigates cloud formation and transitions in cloud types at Summit, Greenland, during 16–22 September 2010, when a warm, moist air mass was advected to Greenland from lower latitudes. During this period there was a sharp transition between high ice clouds and the formation of a lower stratocumulus deck at Summit. A regional mesoscale model is used to investigate the air masses that form these cloud systems. It is found that the high ice clouds form in originally warm, moist air masses that radiatively cool while being transported to Summit. A sensitivity study removing high ice clouds demonstrates that the primary impact of these clouds at Summit is to reduce cloud liquid water embedded within the ice cloud and water vapor in the boundary layer due to vapor deposition on snow. The mixed-phase stratocumulus clouds form at the base of cold, dry air masses advected from the northwest above 4 km. The net surface radiative fluxes during the stratocumulus period are at least 20 W m−2 larger than during the ice cloud period, indicating that, in seasons other than summer, cold, dry air masses advected to Summit above the boundary layer may radiatively warm the top of the Greenland Ice Sheet more effectively than warm, moist air masses advected from lower latitudes. 
    more » « less