Structured non-convex learning problems, for which critical points have favorable statistical properties, arise frequently in statistical machine learning. Algorithmic convergence and statistical estimation rates are well-understood for such problems. However, quantifying the uncertainty associated with the underlying training algorithm is not well-studied in the non-convex setting. In order to address this short-coming, in this work, we establish an asymptotic normality result for the constant step size stochastic gradient descent (SGD) algorithm—a widely used algorithm in practice. Specifically, based on the relationship between SGD and Markov Chains [1], we show that the average of SGD iterates is asymptotically normally distributed around the expected value of their unique invariant distribution, as long as the non-convex and non-smooth objective function satisfies a dissipativity property. We also characterize the bias between this expected value and the critical points of the objective function under various local regularity conditions. Together, the above two results could be leveraged to construct confidence intervals for non-convex problems that are trained using the SGD algorithm.
more »
« less
Recursive Quantile Estimation: Non-Asymptotic Confidence Bounds
This paper considers the recursive estimation of quantiles using the stochastic gradient descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm offers a compu- tationally and memory efficient alternative to the usual empirical estimator. Our focus is on studying the non-asymptotic behavior by providing exponentially decreasing tail prob- ability bounds under mild assumptions on the smoothness of the density functions. This novel non-asymptotic result is based on a bound of the moment generating function of the SGD estimate. We apply our result to the problem of best arm identification in a multi-armed stochastic bandit setting under quantile preferences.
more »
« less
- Award ID(s):
- 2027723
- PAR ID:
- 10558456
- Publisher / Repository:
- MIT Press
- Date Published:
- Journal Name:
- Journal of Machine Learning Research
- ISSN:
- 1533-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Adaptive gradient methods, such as AdaGrad, are among the most successful optimization algorithms for neural network training. While these methods are known to achieve better dimensional dependence than stochastic gradient descent (SGD) for stochastic convex optimization under favorable geometry, the theoretical justification for their success in stochastic non-convex optimization remains elusive. In fact, under standard assumptions of Lipschitz gradients and bounded noise variance, it is known that SGD is worst-case optimal in terms of finding a near-stationary point with respect to the l2-norm, making further improvements impossible. Motivated by this limitation, we introduce refined assumptions on the smoothness structure of the objective and the gradient noise variance, which better suit the coordinate-wise nature of adaptive gradient methods. Moreover, we adopt the l1-norm of the gradient as the stationarity measure, as opposed to the standard l2-norm, to align with the coordinate-wise analysis and obtain tighter convergence guarantees for AdaGrad. Under these new assumptions and the l1-norm stationarity measure, we establish an upper bound on the convergence rate of AdaGrad and a corresponding lower bound for SGD. In particular, we identify non-convex settings in which the iteration complexity of AdaGrad is favorable over SGD and show that, for certain configurations of problem parameters, it outperforms SGD by a factor of d, where d is the problem dimension. To the best of our knowledge, this is the first result to demonstrate a provable gain of adaptive gradient methods over SGD in a non-convex setting. We also present supporting lower bounds, including one specific to AdaGrad and one applicable to general deterministic first-order methods, showing that our upper bound for AdaGrad is tight and unimprovable up to a logarithmic factor under certain conditions.more » « less
-
We study distributed stochastic gradient descent (SGD) in the master-worker architecture under Byzantine attacks. We consider the heterogeneous data model, where different workers may have different local datasets, and we do not make any probabilistic assumptions on data generation. At the core of our algorithm, we use the polynomial-time outlier-filtering procedure for robust mean estimation proposed by Steinhardt et al. (ITCS 2018) to filter-out corrupt gradients. In order to be able to apply their filtering procedure in our heterogeneous data setting where workers compute stochastic gradients, we derive a new matrix concentration result, which may be of independent interest. We provide convergence analyses for smooth strongly-convex and non-convex objectives and show that our convergence rates match that of vanilla SGD in the Byzantine-free setting. In order to bound the heterogeneity, we assume that the gradients at different workers have bounded deviation from each other, and we also provide concrete bounds on this deviation in the statistical heterogeneous data model.more » « less
-
We study distributed stochastic gradient descent (SGD) in the master-worker architecture under Byzantine at- tacks. We consider the heterogeneous data model, where different workers may have different local datasets, and we do not make any probabilistic assumptions on data generation. At the core of our algorithm, we use the polynomial-time outlier-filtering procedure for robust mean estimation proposed by Steinhardt et al. (ITCS 2018) to filter-out corrupt gradients. In order to be able to apply their filtering procedure in our heterogeneous data setting where workers compute stochastic gradients, we derive a new matrix concentration result, which may be of independent interest. We provide convergence analyses for smooth strongly- convex and non-convex objectives and show that our convergence rates match that of vanilla SGD in the Byzantine-free setting. In order to bound the heterogeneity, we assume that the gradients at different workers have bounded deviation from each other, and we also provide concrete bounds on this deviation in the statistical heterogeneous data model.more » « less
-
We study stochastic gradient descent (SGD) in the master-worker architecture under Byzantine attacks. Building upon the recent advances in algorithmic high-dimensional robust statistics, in each SGD iteration, master employs a non-trivial decoding to estimate the true gradient from the unbiased stochastic gradients received from workers, some of which may be corrupt. We provide convergence analyses for both strongly-convex and non-convex smooth objectives under standard SGD assumptions. We can control the approximation error of our solution in both these settings by the mini-batch size of stochastic gradients; and we can make the approximation error as small as we want, provided that workers use a sufficiently large mini-batch size. Our algorithm can tolerate less than 1/3 fraction of Byzantine workers. It can approximately find the optimal parameters in the strongly-convex setting exponentially fast, and reaches to an approximate stationary point in the non-convex setting with linear speed, i.e., with a rate of 1/T, thus, matching the convergence rates of vanilla SGD in the Byzantine-free setting.more » « less
An official website of the United States government

