skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pacific decadal oscillation and ENSO forcings of northerly low-level jets in South America
Abstract The hydrological cycle in South America during austral summer, including extreme precipitation and floods, is significantly influenced by northerly low-level jets (LLJs) along the eastern Andes. These synoptic weather events have been associated with three different types of LLJs (Central, Northern, and Andes) and are sensitive to remote large-scale forcings. This study investigates how tropical forcings related to El Niño/Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) regulate the duration and frequency of each LLJ type and their impacts on extreme precipitation. Our analysis reveals that ENSO and PDO are important in driving the variability of LLJs over the past 65 years. Specifically, the Central LLJ type is more prevalent during El Niño and Warm/Neutral PDO phases, leading to heightened extreme precipitation in southern South America. Conversely, La Niña years during Cold PDO phases tend to favor the Northern and Andes LLJs, which are associated with increased precipitation extremes in the western Amazon and southeastern South America. Central and Andes LLJs tend to persist longer during these favored conditions, causing more pronounced precipitation events in the areas under their influence. This study enhances our understanding of the influence of large-scale atmospheric forcings on the regional precipitation dynamics in South America.  more » « less
Award ID(s):
1937899
PAR ID:
10558484
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
7
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Northerly low-level jets (LLJ) along the eastern Andes are important conduits of moisture transport and play central roles in modulating precipitation in South America. This study further investigates the variability of the LLJ during extended austral summers. A new method characterizes the spatial extent of the LLJ and finds four distinct types: Central, Northern, Andes and Peru. We show the existence of specific evolutions such that the LLJ may initiate in the central region, expands along the Andes and terminates in the northern region. Conversely, the LLJ may propagate from north-to-south. The spatiotemporal evolution of the LLJ is remotely forced by Rossby wave trains propagating from the Pacific Ocean towards South America, and the different phases of the wave trains favor the occurrences of Central, Northern or Andes types. Occurrences of Central and Northern types are more frequent in El Niño and La Niña years, respectively. The persistence of precipitation is shown to be directly related to the persistence of the LLJ. Lastly, the Madden-Julian Oscillation plays an important role in generating wave trains modulating the frequency of LLJ, especially the Central type. 
    more » « less
  2. Abstract In around 1990, significant shifts occurred in the spatial pattern and temporal evolution of the El Niño‐Southern Oscillation (ENSO), with these shifts showing asymmetry between El Niño and La Niña phases. El Niño transitioned from the Eastern Pacific (EP) to the Central Pacific (CP) type, while La Niña's multi‐year (MY) events increased. These changes correlated with shifts in ENSO dynamics. Before 1990, El Niño was influenced by the Tropical Pacific (TP) ENSO dynamic, shifting to the Subtropical Pacific (SP) ENSO dynamic afterward, altering its spatial pattern. La Niña was influenced by the SP ENSO dynamic both before and after 1990 and has maintained the CP type. The strengthened SP ENSO dynamic since 1990, accompanied by enhanced precipitation efficiency during La Niña, make it easier for La Niña to transition into MY events. In contrast, there is no observed increase in precipitation efficiency during El Niño. 
    more » « less
  3. El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO. 
    more » « less
  4. El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO. 
    more » « less
  5. Abstract Hydroclimate variability in tropical South America is strongly regulated by the South American Summer Monsoon (SASM). However, past precipitation changes are poorly constrained due to limited observations and high‐resolution paleoproxies. We found that summer precipitation and the El Niño‐Southern Oscillation (ENSO) variability are well registered in tree‐ring stable oxygen isotopes (δ18OTR) ofPolylepis tarapacanain the Chilean and Bolivian Altiplano in the Central Andes (18–22°S, ∼4,500 m a.s.l.) with the northern forests having the strongest climate signal. More enrichedδ18OTRvalues were found at the southern sites likely due to the increasing aridity toward the southwest of the Altiplano. The climate signal ofP. tarapacana δ18OTRis the combined result of moisture transported from the Amazon Basin, modulated by the SASM, ENSO, and local evaporation, and emerges as a novel tree‐ring climate proxy for the southern tropical Andes. 
    more » « less