skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cooperativity and Frustration Effects (or Lack Thereof) in Polarizable and Non-polarizable Force Fields
Award ID(s):
2117247
PAR ID:
10558541
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
Volume:
19
Issue:
21
ISSN:
1549-9618
Page Range / eLocation ID:
7715 to 7730
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Redox reactions play a key role in various biological processes, including photosynthesis and respiration. Quantitative and predictive computational characterization of redox events is therefore highly desirable for enriching our knowledge on mechanistic features of biological redox-active macromolecules. Here, we present a computational protocol exploiting polarizable embedding hybrid quantum-classical approach and resulting in accurate estimates of redox potentials of biological macromolecules. A special attention is paid to fundamental aspects of the theoretical description such as the effects of environment polarization and of the long-range electrostatic interactions on the computed energetic parameters. Environment (protein and the solvent) polarization is shown to be crucial for accurate estimates of the redox potential: hybrid quantum-classical results with and without account for environment polarization differ by 1.4 V. Long-range electrostatic interactions are shown to contribute significantly to the computed redox potential value even at the distances far beyond the protein outer surface. The approach is tested on simulating reduction potential of cryptochrome 1 protein from Arabidopsis thaliana . The theoretical estimate (0.07 V) of the midpoint reduction potential is in good agreement with available experimental data (−0.15 V). 
    more » « less
  2. Stephan, Douglas; Ackermann, Lutz; Bonifazi, Davide; D_Alessandro, Deanna; Fan, Fengtao; Hamachi, Itaru; Hardi, Michaele; Jelfs, Kim; Li, Chao_Jun; Lou, David (Ed.)
    Polarizable force fields improve the modeling of carbohydrates in polar media. 
    more » « less
  3. Dispersions of dielectric and paramagnetic nanoparticles polarize in response to an external electric or magnetic field and can form chains or other ordered structures depending on the strength of the applied field. The mechanical properties of these materials are of interest for a variety of applications; however, computational studies in this area have so far been limited. In this work, we derive expressions for two important properties for dispersions of polarizable spherical particles with dipoles induced by a uniform external field—the isothermal stress tensor and the pressure. Numerical calculations of these quantities, evaluated using a spectrally accurate Ewald summation method, are validated using thermodynamic integration. We also compare the stress obtained using the mutual dipole model, which accounts for the mutual polarization of particles, to the stress expected from calculations using a fixed dipole model, which neglects mutual polarization. We find that as the conductivity of the particles increases relative to the surrounding medium, the fixed dipole model does not accurately describe the dipolar contribution to the stress. The thermodynamic pressure, calculated from the trace of the stress tensor, is compared to the virial expression for the pressure, which is simpler to calculate but inexact. We find that the virial pressure and the thermodynamic pressure differ, especially in suspensions with a high volume fraction of particles. 
    more » « less