Abstract We present the Texas Euclid Survey for Lyα(TESLA), a spectroscopic survey in the 10 deg2of the Euclid North Ecliptic Pole (NEP) field. Using TESLA, we study how the physical properties of Lyαemitters (LAEs) correlate with Lyαemission to understand the escape of Lyαemission from galaxies at redshifts of 2–3.5. We present an analysis of 43 LAEs performed in the NEP field using early data from the TESLA survey. We use Subaru Hyper Suprime-Cam imaging in thegrizybands, Spitzer/IRAC channels 1 and 2 from the Hawaii 20 deg2(H20) survey, and spectra acquired by the Visible Integral-Field Replicable Unit Spectrograph (VIRUS) on the Hobby–Eberly Telescope. We perform spectral energy distribution (SED) fitting to compute the galaxy properties of 43 LAEs, and study correlations between stellar mass, star formation rate (SFR), and dust to the Lyαrest-frame equivalent width (WLyα). We uncover marginal (1σsignificance) correlations between stellar mass andWLyα, and SFR andWLyα, with a Spearman correlation coefficient of −0. and −0. , respectively. We show that theWLyαdistribution of the 43 LAEs is consistent with being drawn from an exponential distribution with an e-folding scale ofW0= 150 Å. Once complete the TESLA survey will enable the study of ≳50,000 LAEs to explore more correlations between galaxy properties andWLyα. The large sample size will allow the construction of a predictive model forWLyαas a function of SED-derived galaxy properties, which could be used to improve Lyα-based constraints on reionization. 
                        more » 
                        « less   
                    
                            
                            The Lyα Dependence on Nebular Properties from the HETDEX and MOSDEF Surveys
                        
                    
    
            Abstract Investigating the impact of galaxy properties on emergent Lyαemission is crucial for reionization studies, given the sensitivity of Lyαto neutral hydrogen. This study presents an analysis of the physical characteristics of 155 star-forming galaxies, 29 with Lyαdetected, and 126 with Lyαnot detected with LyαEW < 20 Å, atz= 1.9–3.5, drawn from the MOSFIRE Deep Evolution Field survey, that have overlapping observations from the Hobby–Eberly Telescope Dark Energy Experiment survey. To unravel the interstellar medium (ISM) conditions in our sample, we developed a custom nebular line modeling algorithm based on the MAPPINGS V photoionization model grid and theemceeframework. Combining nebular-based ISM properties with photometry-based global properties, constrained viaBagpipes, we explore distinctions in the stellar and gas properties between Lyα-detected and Lyα-nondetected galaxies. Our analysis reveals statistically significant differences between the two samples in terms of stellar mass and dust attenuation (AV) at >2σsignificance, as determined via a Kolmogorov–Smirnov test. Moreover, there are weaker (≲1σsignificance) indications that the ionization parameter and metallicity differ between the two samples. Our results demonstrate that the escape fraction of Lyα( ) is inversely correlated with stellar mass, star formation rate, and dust attenuation, while it is positively correlated with the ionization parameter, with significance levels exceeding 2σ. Our findings suggest that the interstellar environments of Lyα-detected galaxies, characterized by low mass, low dust, low gas-phase metallicity, and high ionization parameters, play a pivotal role in promoting the escape of Lyαradiation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2408358
- PAR ID:
- 10558800
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 977
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 107
- Size(s):
- Article No. 107
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We investigate the effects of stellar populations and sizes on Lyαescape in 27 spectroscopically confirmed and 35 photometric Lyαemitters (LAEs) atz≈ 2.65 in seven fields of the Boötes region of the NOAO Deep Wide-Field Survey. We use deep HST/WFC3 imaging to supplement ground-based observations and infer key galaxy properties. Compared to typical star-forming galaxies (SFGs) at similar redshifts, the LAEs are less massive (M⋆≈ 107–109M⊙), younger (ages ≲1 Gyr), smaller (re< 1 kpc), and less dust-attenuated (E(B−V) ≤ 0.26 mag) but have comparable star formation rates (SFRs ≈ 1–100M⊙yr−1). Some of the LAEs in the sample may be very young galaxies having low nebular metallicities (Zneb≲ 0.2Z⊙) and/or high ionization parameters ( ). Motivated by previous studies, we examine the effects of the concentration of star formation and gravitational potential on Lyαescape by computing SFR surface density, ΣSFR, and specific SFR surface density, ΣsSFR. For a given ΣSFR, the Lyαescape fraction is higher for LAEs with lower stellar masses. The LAEs have a higher ΣsSFR, on average, compared to SFGs. Our results suggest that compact star formation in a low gravitational potential yields conditions amenable to the escape of Lyαphotons. These results have important implications for the physics of Lyαradiative transfer and for the type of galaxies that may contribute significantly to cosmic reionization.more » « less
- 
            Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are and , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( ). Among them, , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ⋆) in high-surface-density regions (Σ⋆≥ 100M⊙pc−2), following the power-law relations and . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σ⋆as a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σ⋆is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.more » « less
- 
            Abstract We present the results of a stellar population analysis of 72 Lyα-emitting galaxies (LAEs) in GOODS-N at 1.9 <z< 3.5 spectroscopically identified by the Hobby−Eberly Telescope Dark Energy Experiment (HETDEX). We provide a method for connecting emission-line detections from the blind spectroscopic survey to imaging counterparts, a crucial tool needed as HETDEX builds a massive database of ∼1 million Lyαdetections. Using photometric data spanning as many as 11 filters covering 0.4 <λ(μm) < 4.5 from the Hubble Space Telescope and Spitzer Space Telescope, we study the objects’ global properties and explore which properties impact the strength of Lyαemission. We measure a median stellar mass of and conclude that the physical properties of HETDEX spectroscopically selected LAEs are comparable to LAEs selected by previous deep narrowband studies. We find that stellar mass and star formation rate correlate strongly with the Lyαequivalent width. We then use a known sample ofz> 7 LAEs to perform a protostudy of predicting Lyαemission from galaxies in the epoch of reionization, finding agreement at the 1σlevel between prediction and observation for the majority of strong emitters.more » « less
- 
            Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of (68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm= Gyr, stellar mass of log(M*/M⊙) = , star formation rate of SFR = M⊙yr−1, stellar metallicity of log(Z*/Z⊙) = , and dust attenuation of mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
