skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Beyond the matrix: Experimental approaches to studying cognitive agents in social-ecological systems
Studying social-ecological systems, in which agents interact with each other and their environment are important both for sustainability applications and for understanding how human cognition functions in context. In such systems, the environment shapes the agents' experience and actions, and in turn collective action of agents changes social and physical aspects of the environment. Here we review current investigation approaches, which rely on a lean design, with discrete actions and outcomes and little scope for varying environmental parameters and cognitive demands. We then introduce a multiagent reinforcement learning (MARL) approach, which builds on modern artificial intelligence techniques, and provides new avenues to model complex social worlds, while preserving more of their characteristics, and allowing them to capture a variety of social phenomena. These techniques can be fed back to the laboratory where they make it easier to design experiments in complex social situations without compromising their tractability for computational modeling. We showcase the potential MARL by discussing several recent studies that have used it, detailing the way environmental settings and cognitive constraints can lead to the emergence of complex cooperation strategies. This novel approach can help researchers bring together insights from human cognition, sustainability, and AI, to tackle real world problems of social-ecological systems.  more » « less
Award ID(s):
2049553
PAR ID:
10559020
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Cognition
Volume:
254
Issue:
C
ISSN:
0010-0277
Page Range / eLocation ID:
105993
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A significant number and range of challenges besetting sustainability can be traced to the actions and interactions of multiple autonomous agents (people mostly) and the entities they create (e.g., institutions, policies, social network) in the corresponding social-environmental systems (SES). To address these challenges, we need to understand decisions made and actions taken by agents, the outcomes of their actions, including the feedbacks on the corresponding agents and environment. The science of Agent-based Complex Systems—ACS science—has a significant potential to handle such challenges. The advantages of ACS science for sustainability are addressed by way of identifying the key elements and challenges in sustainability science, the generic features of ACS, and the key advances and challenges in modeling ACS. Artificial intelligence and data science promise to improve understanding of agents’ behaviors, detect SES structures, and formulate SES mechanisms. 
    more » « less
  2. A significant number and range of challenges besetting sustainability can be traced to the actions and interactions of multiple autonomous agents (people mostly) and the entities they create (e.g., institutions, policies, social network) in the corresponding social-environmental systems (SES). To address these challenges, we need to understand decisions made and actions taken by agents, the outcomes of their actions, including the feedbacks on the corresponding agents and environment. The science of complex adaptive systems—CAS science—has a significant potential to handle such challenges. We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science, the generic features of CAS, and the key advances and challenges in modeling CAS. Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’ behaviors, detect SES structures, and formulate SES mechanisms. 
    more » « less
  3. To achieve human-like common sense about everyday life, machine learning systems must understand and reason about the goals, preferences, and actions of other agents in the environment. By the end of their first year of life, human infants intuitively achieve such common sense, and these cognitive achievements lay the foundation for humans' rich and complex understanding of the mental states of others. Can machines achieve generalizable, commonsense reasoning about other agents like human infants? The Baby Intuitions Benchmark (BIB) challenges machines to predict the plausibility of an agent's behavior based on the underlying causes of its actions. Because BIB's content and paradigm are adopted from developmental cognitive science, BIB allows for direct comparison between human and machine performance. Nevertheless, recently proposed, deep-learning-based agency reasoning models fail to show infant-like reasoning, leaving BIB an open challenge. 
    more » « less
  4. null (Ed.)
    Systems thinking (ST) skills are often the foundation of sustainability science curricula. Though ST skill sets are used as a basic approach to reasoning about complex environmental problems, there are gaps in our understanding regarding the best ways to promote and assess ST learning in classrooms. Since ST learning provides Science, Technology, Engineering, and Mathematics (STEM) students’ important skills and awareness to participate in environmental problem-solving, addressing these gaps is an important STEM learning contribution. We have created guidelines for teaching and measuring ST skills derived from a hybrid of a literature review and through case study data collection. Our approach is based on semi-quantitative cognitive mapping techniques meant to support deep reasoning about the complexities of social–ecological issues. We begin by arguing that ST should be evaluated on a continuum of understanding rather than a binary of correct/incorrect or present/absent. We then suggest four fundamental dimensions of teaching and evaluating ST which include: (1) system structure, (2) system function, (3) identification of leverage points for change, and (4) trade-off analysis. Finally, we use a case study to show how these ideas can be assessed through cognitive maps to help students develop deep system understanding and the capacity to propose innovative solutions to sustainability problems. 
    more » « less
  5. In cooperative multi-agent reinforcement learning (Co-MARL), a team of agents must jointly optimize the team's longterm rewards to learn a designated task. Optimizing rewards as a team often requires inter-agent communication and data sharing, leading to potential privacy implications. We assume privacy considerations prohibit the agents from sharing their environment interaction data. Accordingly, we propose Privacy-Engineered Value Decomposition Networks (PE-VDN), a Co-MARL algorithm that models multi-agent coordination while provably safeguarding the confidentiality of the agents' environment interaction data. We integrate three privacy-engineering techniques to redesign the data flows of the VDN algorithm-an existing Co-MARL algorithm that consolidates the agents' environment interaction data to train a central controller that models multi-agent coordination-and develop PE-VDN. In the first technique, we design a distributed computation scheme that eliminates Vanilla VDN's dependency on sharing environment interaction data. Then, we utilize a privacy-preserving multi-party computation protocol to guar-antee that the data flows of the distributed computation scheme do not pose new privacy risks. Finally, we enforce differential privacy to preempt inference threats against the agents' training data-past environment interactions-when they take actions based on their neural network predictions. We implement PE-VDN in StarCraft Multi-Agent Competition (SMAC) and show that it achieves 80% of Vanilla VDN's win rate while maintaining differential privacy levels that provide meaningful privacy guarantees. The results demonstrate that PE-VDN can safeguard the confidentiality of agents' environment interaction data without sacrificing multi-agent coordination. 
    more » « less