skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Exploring the Design for Wearability of Wearable Devices: A Scoping Review
Wearable smart devices have become ubiquitous in modern society, extensively researched for their health monitoring capabilities and convenience features. However, the “wearability” of these devices remains a relatively understudied area, particularly in terms of design informed by clinical trials. Wearable devices possess significant potential to enhance daily life, yet their success depends on understanding and validating the design factors that influence comfort, usability, and seamless integration into everyday routines. This review aimed to evaluate the “wearability” of smart devices through a mixed-methods scoping literature review. By analyzing studies on comfort, usability, and daily integration, it sought to identify design improvements and research gaps to enhance user experience and system design. From an initial pool of 130 publications (1998–2024), 19 studies met the inclusion criteria. The review identified three significant outcomes: (1) a lack of standardized assessment methods, (2) the predominance of qualitative over quantitative assessments, and (3) limited utility of findings for informing design. Although qualitative studies provide valuable insights, the absence of quantitative research hampers the development of validated, generalizable design criteria. This underscores the urgent need for future studies to adopt robust quantitative methodologies to better assess wearability and inform evidence-based design strategies.  more » « less
Award ID(s):
1929953
PAR ID:
10559088
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Computers
Volume:
13
Issue:
12
ISSN:
2073-431X
Page Range / eLocation ID:
326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Upper limb mobility impairments affect individuals at all life stages. Exoskeletons can assist in rehabilitation as well as performing Activities of Daily Living (ADL). Most commercial assistive devices still rely on rigid robotics with constrained biomechanical degrees of freedom that may even increase user exertion. Therefore, this paper discusses the iterative design and development of a novel hybrid pneumatic actuation and Shape Memory Alloy (SMA) based wearable soft exoskeleton to assist in shoulder abduction and horizontal flexion/extension movements, with integrated soft strain sensing to track shoulder joint motion. The garment development was done in two stages which involved creating (1) SMA actuators integrated with soft sensing, and (2) integrating pneumatic actuation. The final soft exoskeleton design was developed based on the insights gained from two prior prototypes in terms of wearability, usability, comfort, and functional specifications (i.e., placement and number) of the sensors and actuators. The final exoskeleton is a modular, multilayer garment which uses a hybrid and customizable actuation strategy (SMA and inflatable pneumatic bladder). 
    more » « less
  2. Using infrared electrochromism as the strategy to combat the fluctuation of environmental conditions, wearable variable-emittance (WeaVE) devices are able to integrate the functionality of personal thermoregulation and closed-loop control into the future textile, featuring its large tunable range, ultra-low energy consumption, lightweight, and wearability. Recently, this new wearable technology has evolved beyond planar electrochromic cells and is moving closer to woven textiles. To further improve electrochromic performance and wearability, comprehensive progress is necessary from materials science to fabrication techniques. In this Perspective, we elaborate on the mechanisms behind electrochemically active WeaVE devices, analyze how dynamic and fundamental studies may improve the electrochromic performance, and explore the possibility of incorporating nanophotonic designs in the development of this future smart textile through research. 
    more » « less
  3. This paper investigates the tradeoffs between design variables important for the development of a mobility support soft exoskeleton for horizontal shoulder adduction. The soft exoskeleton utilizes discreet shape memory alloy (SMA) spring actuators to generate the required torque to move the arm segment, while preserving the qualities of a soft, wearable garment solution. A pilot benchtop test involving varying power input, actuator anchor position, actuator orientation, and added weight, was investigated to evaluate their effects against the degree of motion the soft exoskeleton allows. The results show that the power input, actuator anchor position, and simulated limb weight each affect the ultimate horizontal adduction angle the exoskeleton is able to induce. Further, the project highlights a crucial point in regard to the tradeoffs between functionality and wearability: when actuator orientation was investigated, we found a decrement in functionality (as measured by maximum achievable horizontal adduction angle) when the actuators were constrained close to the body. This shows that when aiming to improve the hypothetical system’s wearability/usability, the effective torque that can be generated is reduced. Together these findings demonstrate important design considerations while developing a wearable, soft exoskeleton system that is capable of effectively supporting movement of the body while maintaining the comfort and discreetness of a regular garment. 
    more » « less
  4. As wearable electronic devices are becoming an integral part of modern life, there is a vast demand for safe and efficient energy storage devices to power them. While the research and development of microbatteries and supercapacitors (SCs) have significantly progressed, the latter has attracted much attention due to their excellent power density, longevity, and safety. Furthermore, SCs with a 1D fiber shape are preferred because of their ease of integration into today’s smart garments and other wearable devices. Fiber supercapacitors based on carbon nanotubes (CNT) are promising candidates with a unique 1D structure, high electrical and thermal conductivity, outstanding flexibility, excellent mechanical strength, and low gravimetric density. This review aims to serve as a comprehensive publication presenting the fundamentals and recent developments on CNT-fiber-based SCs. The first section gives a general overview of the supercapacitor types based on the charge storage mechanisms and electrode configuration, followed by the various fiber fabrication methods. The next section explores the different strategies used to enhance the electrochemical performance of these SCs, followed by a broad study on their stretchability and multifunctionality. Finally, the review presents the current performance and scalability challenges affecting the CNT-based SCs, highlighting their prospects. 
    more » « less
  5. Future wearable electronics and smart textiles face a major challenge in the development of energy storage devices that are high-performing while still being flexible, lightweight, and safe. Fiber supercapacitors are one of the most promising energy storage technologies for such applications due to their excellent electrochemical characteristics and mechanical flexibility. Over the past decade, researchers have put in tremendous effort and made significant progress on fiber supercapacitors. It is now the time to assess the outcomes to ensure that this kind of energy storage device will be practical for future wearable electronics and smart textiles. While the materials, fabrication methods, and energy storage performance of fiber supercapacitors have been summarized and evaluated in many previous publications, this review paper focuses on two practical questions: Are the reported devices providing sufficient energy and power densities to wearable electronics? Are the reported devices flexible and durable enough to be integrated into smart textiles? To answer the first question, we not only review the electrochemical performance of the reported fiber supercapacitors but also compare them to the power needs of a variety of commercial electronics. To answer the second question, we review the general approaches to assess the flexibility of wearable textiles and suggest standard methods to evaluate the mechanical flexibility and stability of fiber supercapacitors for future studies. Lastly, this article summarizes the challenges for the practical application of fiber supercapacitors and proposes possible solutions. 
    more » « less