skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 26, 2025

Title: Maize unstable factor for orange1 encodes a nuclear protein that affects redox accumulation during kernel development
Abstract The basal endosperm transfer layer (BETL) of the maize (Zea mays L.) kernel is composed of transfer cells for nutrient transport to nourish the developing kernel. To understand the spatiotemporal processes required for BETL development, we characterized 2 unstable factor for orange1 (Zmufo1) mutant alleles. The BETL defects in these mutants were associated with high levels of reactive oxygen species, oxidative DNA damage, and cell death. Interestingly, antioxidant supplementation in in vitro cultured kernels alleviated the cellular defects in mutants. Transcriptome analysis of the loss-of-function Zmufo1 allele showed differential expression of tricarboxylic acid cycle, redox homeostasis, and BETL-related genes. The basal endosperms of the mutant alleles had high levels of acetyl-CoA and elevated histone acetyltransferase activity. The BETL cell nuclei showed reduced electron-dense regions, indicating sparse heterochromatin distribution in the mutants compared with wild-type. Zmufo1 overexpression further reduced histone methylation marks in the enhancer and gene body regions of the pericarp color1 (Zmp1) reporter gene. Zmufo1 encodes an intrinsically disordered nuclear protein with very low sequence similarity to known proteins. Yeast two-hybrid and luciferase complementation assays established that ZmUFO1 interacts with proteins that play a role in chromatin remodeling, nuclear transport, and transcriptional regulation. This study establishes the critical function of Zmufo1 during basal endosperm development in maize kernels.  more » « less
Award ID(s):
2341575 1051654
PAR ID:
10559102
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Meyers, Blake
Publisher / Repository:
American Society of Plant Biologists
Date Published:
Journal Name:
The Plant Cell
ISSN:
1040-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Braeutigam, Andrea (Ed.)
    Abstract Opaque kernels in maize may result from mutations in many genes, such as OPAQUE-2. In this study, a maize null mutant of RNA-DIRECTED DNA METHYLATION 4 (RDM4) showed an opaque kernel phenotype, as well as plant developmental delay, male sterility, and altered response to cold stress. We found that in opaque kernels, all zein proteins were reduced and amino acid content was changed, including increased lysine. Transcriptomic and proteomic analysis confirmed the zein reduction and proteomic rebalancing of non-zein proteins, which was quantitatively and qualitatively different from opaque-2. Global transcriptional changes were found in endosperm and leaf, including many transcription factors and tissue-specific expressed genes. Furthermore, of the more than 8000 significantly differentially expressed genes in wild type in response to cold, a significant proportion (25.9% in moderate cold stress and 40.8% in near freezing stress) were not differentially expressed in response to cold in rdm4, suggesting RDM4 may participate in regulation of abiotic stress tolerance. This initial characterization of maize RDM4 provides a basis for further investigating its function in endosperm and leaf, and as a regulator of normal and stress-responsive development. 
    more » « less
  2. Abstract Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm. 
    more » « less
  3. Abstract Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm. 
    more » « less
  4. Abstract Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single-cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR. 
    more » « less
  5. null (Ed.)
    Chloroplasts are of prokaryotic origin with a double-membrane envelope separating plastid metabolism from the cytosol. Envelope membrane proteins integrate chloroplasts with the cell, but envelope biogenesis mechanisms remain elusive. We show that maize defective kernel5 (dek5) is critical for envelope biogenesis. Amyloplasts and chloroplasts are larger and reduced in number in dek5 with multiple ultrastructural defects. The DEK5 protein is homologous to rice SSG4, Arabidopsis thaliana EMB2410/TIC236, and Escherichia coli tamB. TamB functions in bacterial outer membrane biogenesis. DEK5 is localized to the envelope with a topology analogous to TamB. Increased levels of soluble sugars in dek5 developing endosperm and elevated osmotic pressure in mutant leaf cells suggest defective intracellular solute transport. Proteomics and antibody-based analyses show dek5 reduces levels of Toc75 and chloroplast envelope transporters. Moreover, dek5 chloroplasts reduce inorganic phosphate uptake with at least an 80% reduction relative to normal chloroplasts. These data suggest that DEK5 functions in plastid envelope biogenesis to enable transport of metabolites and proteins. 
    more » « less