skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact-Free Gaits for Planar Bipeds: Changing Walking Speed and Gait
The problems of changing the walking speed and stride length of impact-free gaits for point-foot planar bipeds are addressed. The impact-free gaits are designed using an approach developed in prior work. It is shown that the impulse controlled Poincar´e map (ICPM) approach can be modified to transition between orbits defining gaits with different walking speeds, and the continuous controller can be changed during the swing phase to transition between gaits that have distinct stride lengths. The effectiveness of the approaches is demonstrated using simulations carried out on a five-link biped.  more » « less
Award ID(s):
2043464
PAR ID:
10559148
Author(s) / Creator(s):
; ;
Publisher / Repository:
2024 4th Modeling, Estimation and Control Conference
Date Published:
Subject(s) / Keyword(s):
Path Planning and Motion Control, Robotics
Format(s):
Medium: X
Location:
Chicago, IL
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper explores new ways to use energy shaping and regulation methods in walking systems to generate new passive-like gaits and dynamically transition between them. We recapitulate a control framework for Lagrangian hybrid systems, and show that regulating a state varying energy function is equivalent to applying energy shaping and regulating the system to a constant energy value. We then consider a simple one-dimensional hopping robot and show how energy shaping and regulation control can be used to generate and transition between nearly globally stable hopping limit cycles. The principles from this example are then applied on two canonical walking models, the spring loaded inverted pendulum (SLIP) and compass gait biped, to generate and transition between locomotive gaits. These examples show that piecewise jumps in control parameters can be used to achieve stable changes in desired gait characteristics dynamically/online. 
    more » « less
  2. null (Ed.)
    This paper systematically decomposes a quadrupedal robot into bipeds to rapidly generate walking gaits and then recomposes these gaits to obtain quadrupedal locomotion. We begin by decomposing the full-order, nonlinear and hybrid dynamics of a three-dimensional quadrupedal robot, including its continuous and discrete dynamics, into two bipedal systems that are subject to external forces. Using the hybrid zero dynamics (HZD) framework, gaits for these bipedal robots can be rapidly generated (on the order of seconds) along with corresponding controllers. The decomposition is achieved in such a way that the bipedal walking gaits and controllers can be composed to yield dynamic walking gaits for the original quadrupedal robot - the result is the rapid generation of dynamic quadruped gaits utilizing the full-order dynamics. This methodology is demonstrated through the rapid generation (3.96 seconds on average) of four stepping-in-place gaits and one diagonally symmetric ambling gait at 0.35 m/s on a quadrupedal robot - the Vision 60, with 36 state variables and 12 control inputs - both in simulation and through outdoor experiments. This suggested a new approach for fast quadrupedal trajectory planning using full-body dynamics, without the need for empirical model simplification, wherein methods from dynamic bipedal walking can be directly applied to quadrupeds. 
    more » « less
  3. Sampling-based motion planning algorithms provide a means to adapt the behaviors of autonomous robots to changing or unknown a priori environmental conditions. However, as the size of the space over which a sampling-based approach needs to search is increased (perhaps due to considering robots with many degree of freedom) the computational limits necessary for real-time operation are quickly exceeded. To address this issue, this paper presents a novel sampling-based approach to locomotion planning for highly-articulated robots wherein the parameters associated with a class of locomotive behaviors (e.g., inter-leg coordination, stride length, etc.) are inferred in real-time using a sample-efficient algorithm. More specifically, this work presents a data-based approach wherein offline-learned optimal behaviors, represented using central pattern generators (CPGs), are used to train a class of probabilistic graphical models (PGMs). The trained PGMs are then used to inform a sampling distribution of inferred walking gaits for legged hexapod robots. Simulated as well as hardware results are presented to demonstrate the successful application of the online inference algorithm. 
    more » « less
  4. Sampling-based motion planning algorithms provide a means to adapt the behaviors of autonomous robots to changing or unknown a priori environmental conditions. However, as the size of the space over which a sampling-based approach needs to search is increased (perhaps due to considering robots with many degree of freedom) the computational limits necessary for real-time operation are quickly exceeded. To address this issue, this paper presents a novel sampling-based approach to locomotion planning for highly-articulated robots wherein the parameters associated with a class of locomotive behaviors (e.g., inter-leg coordination, stride length, etc.) are inferred in real-time using a sample-efficient algorithm. More specifically, this work presents a data-based approach wherein offline-learned optimal behaviors, represented using central pattern generators (CPGs), are used to train a class of probabilistic graphical models (PGMs). The trained PGMs are then used to inform a sampling distribution of inferred walking gaits for legged hexapod robots. Simulated as well as hardware results are presented to demonstrate the successful application of the online inference algorithm. 
    more » « less
  5. ABSTRACT Macaques trained to perform bipedally used running gaits across a wide range of speeds. At higher speeds they preferred unilateral skipping (galloping). The same asymmetric stepping pattern was used while hurdling across two low obstacles placed at the distance of a stride within our experimental track. In bipedal macaques during skipping, we expected a differential use of the trailing and leading legs. The present study investigated global properties of the effective and virtual leg, the location of the virtual pivot point (VPP), and the energetics of the center of mass (CoM), with the aim of clarifying the differential leg operation during skipping in bipedal macaques. When skipping, macaques displayed minor double support and aerial phases during one stride. Asymmetric leg use was indicated by differences in leg kinematics. Axial damping and tangential leg work did not influence the indifferent peak ground reaction forces and impulses, but resulted in a lift of the CoM during contact of the leading leg. The aerial phase was largely due to the use of the double support. Hurdling amplified the differential leg operation. Here, higher ground reaction forces combined with increased double support provided the vertical impulse to overcome the hurdles. Following CoM dynamics during a stride, skipping and hurdling represented bouncing gaits. The elevation of the VPP of bipedal macaques resembled that of human walking and running in the trailing and leading phases, respectively. Because of anatomical restrictions, macaque unilateral skipping differs from that of humans, and may represent an intermediate gait between grounded and aerial running. 
    more » « less