skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transglobal spread of an ecologically relevant sea urchin parasite
Abstract Mass mortality of the dominant coral reef herbivore Diadema antillarum in the Caribbean in the early 1980s contributed to a persistent phase shift from coral- to algal-dominated reefs. In 2022, a scuticociliate most closely related to Philaster apodigitiformis caused further mass mortality of D. antillarum across the Caribbean, leading to >95% mortality at affected sites. Mortality was also reported in the related species Diadema setosum in the Mediterranean in 2022, though the causative agent of the Mediterranean outbreak has not yet been determined. In April 2023, mass mortality of Diadema setosum occurred along the Sultanate of Oman's coastline. Urchins displayed signs compatible with scuticociliatosis including abnormal behavior, drooping and loss of spines, followed by tissue necrosis and death. Here we report the detection of an 18S rRNA gene sequence in abnormal urchins from Muscat, Oman, that is identical to the Philaster strain responsible for D. antillarum mass mortality in the Caribbean. We also show that scuticociliatosis signs can be elicited in Diadema setosum by experimental challenge with the cultivated Philaster strain associated with Caribbean scuticociliatosis. These results demonstrate the Philaster sp. associated with D. antillarum mass mortality has rapidly spread to geographically distant coral reefs, compelling global-scale awareness and monitoring for this devastating condition through field surveys, microscopy, and molecular microbiological approaches, and prompting investigation of long-range transmission mechanisms.  more » « less
Award ID(s):
2049225
PAR ID:
10559214
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ISME Journal
Date Published:
Journal Name:
The ISME Journal
Volume:
18
Issue:
1
ISSN:
1751-7362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionIn recent decades, Caribbean coral reefs have lost many vital marine species due to diseases. The well-documented mass mortality event of the long-spined black sea urchinDiadema antillarumin the early 1980s stands out among these collapses. This die-off killed over 90% ofD. antillarumchanging the reefscape from coral to algal-dominated. Nearly 40 years later,D. antillarumpopulations have yet to recover. In early 2022, a new mortality event ofD. antillarumwas reported along the Caribbean, including Puerto Rico. MethodsThis study identifies the gut microbiota changes associated with theD. antillarumduring this mortality event. It contrasts them with the bacterial composition of gut samples from healthy individuals collected in 2019 by using 16S rRNA sequencing analyses. ResultsNotably, the die-off group’s core microbiome resembled bacteria commonly found in the human skin and gut, suggesting potential anthropogenic contamination and wastewater pollution as contributing factors to the 2022 dysbiosis. The animals collected in 2022, especially those with signs of disease, lacked keystone taxa normally found inDiademaincludingPhotobacteriumandPropionigenium. DiscussionThe association between human microbes and disease stages in the long-spined urchinD. antillarum, especially in relation to anthropogenic contamination, highlights a complex interplay between environmental stressors and marine health. While these microbes might not be the direct cause of death in this species of sea urchins, their presence and proliferation can indicate underlying issues, such as immune depletion due to pollution, habitat destruction, or climate change, that ultimately compromise the health of these marine organisms. 
    more » « less
  2. Knowlton, N (Ed.)
    In 1983 to 1984, a mass mortality event caused a Caribbean-wide, >95% population reduction of the echinoid grazer, Diadema antillarum . This led to blooms of algae contributing to the devastation of scleractinian coral populations. Since then, D. antillarum exhibited only limited and patchy population recovery in shallow water, and in 2022 was struck by a second mass mortality reported over many reef localities in the Caribbean. Half-a-century time-series analyses of populations of this sea urchin from St. John, US Virgin Islands, reveal that the 2022 event has reduced population densities by 98.00% compared to 2021, and by 99.96% compared to 1983. In 2021, coral cover throughout the Caribbean was approaching the lowest values recorded in modern times. However, prior to 2022, locations with small aggregations of D. antillarum produced grazing halos in which weedy corals were able to successfully recruit and become the dominant coral taxa. The 2022 mortality has eliminated these algal-free halos on St. John and perhaps many other regions, thereby increasing the risk that these reefs will further transition into coral-free communities. 
    more » « less
  3. A ciliate belonging to theDiadema antillarumscuticociliatosis (DaSc)-associatedPhilasterclade (DaScPc) caused catastrophic long-spined urchin mass mortality in spring and summer of 2022. The ciliate can be grown in culture in both the presence and absence ofD. antillarumtissues, suggesting that it may persist outside its host by consuming microorganisms or dissolved organic nutrients. We hypothesized that DaScPc was present outside its host during and after mass mortality and absent prior to 2022. We examined DaScPc in DNA extracted from 500 swabs of sympatric metazoa and abiotic surfaces, and plankton samples, collected at 35 sites in the Caribbean in 2022 and 2023. DaScPc was detected on corals, turf algae, and a sponge, predominantly at sites with active or prior DaSc. We examined whether it was present prior to 2022 by surveying extracted DNA from Caribbean corals and water collected near corals by PCR and by mining publicly available transcriptomes and metagenomes for DaScPc rRNAs. These efforts yielded no DaScPc genes. We further hypothesized that DaScPc may recruit to the specific corals detected in field surveys, and that these may then infect naïve hosts. A mesocosm experiment to test DaScPc recruitment suggested that, while it recruited to corals, it did so inconsistently between coral species. Incubation of corals that recruited DaScPc with naïve urchins yielded inconclusive results since urchins died without characteristic DaSc signs. Overall, our results suggest that DaScPc may occur outside its urchin host, and that it may have been absent in the region prior to 2022. 
    more » « less
  4. BackgroundEchinoderms play crucial roles in coral reef ecosystems, where they are significant detritivores and herbivores. The phylum is widely known for its boom and bust cycles, driven by food availability, predation pressure and mass mortalities. Hence, surveillance of potential pathogens and associates of grossly normal specimens is important to understanding their roles in ecology and mass mortality. MethodsWe performed viral surveillance in two common coral reef echinoderms,Diadema antillarumandHolothuria floridana, using metagenomics. Urchin specimens were obtained during the 2022Diadema antillarumscuticociliatosis mass mortality event from the Caribbean and grossly normalH. floridanaspecimens from a reef in Florida. Viral metagenomes were assembled and aligned against viral genomes and protein encoding regions. Metagenomic reads and previously sequenced transcriptomes were further investigated for putative viral elements by Kraken2. ResultsD. antillarumwas devoid of viruses typically seen in echinoderms, butH. floridanayielded viral taxa similar to those found in other sea cucumbers, includingPisoniviricetes(Picornaviruses),Ellioviricetes(Bunyaviruses), andMagsaviricetes(Nodaviruses). The lack of viruses detected inD. antillarummay be due to the large amount of host DNA in viral metagenomes, or because viruses are less abundant inD. antillarumtissues when compared toH. floridanatissues. Our results also suggest that RNA amplification approach may influence viral representation in viral metagenomes. While our survey was successful in describing viruses associated with both echinoderms, our results indicate that viruses are less pronounced inD. antillarumthan in other echinoderms. These results are important in context of wider investigation on the association between viruses andD. antillarummass mortalities, since the conventional method used in this study was unsuccessful. 
    more » « less
  5. Pervasive epizootic events have had a significant impact on marine invertebrates throughout the Caribbean, leading to severe population declines and consequential ecological implications. One such event was the regional collapse of herbivory, partly caused by theDiadema antillarummortality event in 1983–84, resulting in a trophic cascade and altering the structure of reef communities. Consequently, there was a notable decrease in coral recruitment and an increase in the coverage of macroalgae. Nearly four decades later, in early 2022, the Caribbean basin experienced another widespread mass mortality event, further reducing the populations ofD. antillarum. To assess the effects of this recent mortality event on the current demographics ofD. antillarum, we surveyed eight populations along the eastern, northeastern, northern, and northwestern coast of Puerto Rico from May to July 2022, estimating their population density, size distribution, and disease prevalence. Additionally, the study compared these population parameters with data from four sites previously surveyed in 2012 and 2017 to understand the impact of the recent mortality event. The survey conducted in 2022 showed varying population densities at the surveyed reefs. Some populations exhibited mean densities of nearly one individual per square meter, while others had extremely low or no living individuals per square meter. The four populations with the highest density showed no evidence of disease, whereas the four populations with the lowestD. antillarumdensities exhibited moderate to high disease prevalence. However, when considering all sites, the estimated disease prevalence remained below 5%. Nevertheless, the comparison with data from 2012 and 2017 indicated that the recent mortality event had a negative impact onD. antillarumdemographics at multiple sites, as the densities in 2022 were reduced by 60.19% compared to those from the previous years. However, it is still too early to determine the severity of this new mortality event compared to the 1983–84 mortality event. Therefore, it is imperative to continue monitoring these populations. 
    more » « less